Effect of Compositionally Different Substrates on Elemental Properties of Bay Bolete Mushrooms: Case Study of 34 Essential and Non-essential Elements from Six Areas Affected Differently by Industrial Pollution
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
311450
Česká geologická služba
PubMed
39477854
PubMed Central
PMC12174288
DOI
10.1007/s12011-024-04429-5
PII: 10.1007/s12011-024-04429-5
Knihovny.cz E-resources
- Keywords
- Bedrock, Mushroom, Soil, Trace elements, Translocation, Uptake,
- MeSH
- Agaricales * chemistry MeSH
- Environmental Monitoring MeSH
- Trace Elements * analysis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Trace Elements * MeSH
We studied concentrations of 34 essential and non-essential elements in samples of edible Bay Bolete (Imleria badia) mushrooms added by samples of the growing substrate and bioavailable fraction. The samples were collected from six forested sites affected differently by industrial pollution and underlain by compositionally contrasting bedrock: granite, amphibolite, and peridotite. In all cases, mushrooms behaved as a bioconcentrating system for elements such as Ag, K, P, Rb, S, and Se (BCF > 1) being a bioexcluding system for the rest of the elements analyzed (BCF < 1). Most analyzed elements displayed moderate to high within-mushroom mobility being accumulated preferably in the apical parts of the mushroom's fruiting body (TF > 1). The highest mobility was demonstrated by Cd and Cu. Sodium was the only element with significantly low mobility (TF < 1), and it accumulated preferably in the stipe. Imleria badia seems to be sensitive to the accumulation of elements such as As, Cd, and Pb from the atmospheric deposits. Specific geochemistry of the growing substrate was reflected to different extend in the accumulation of elements such as Ag, Cu, Rb, S, Al, Ca, Fe, Ba, and Na in the mushroom's fruiting bodies.
See more in PubMed
Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem 122:2–15. 10.1016/j.foodchem.2010.02.045
Chojnacka A, Jarzyńska G, Lewandowska M, Nnorom ICh, Falandysz J (2013) Multivariate analysis of minerals in Yellow-cracking Bolete (
Zocher A-L, Kraemer D, Merschel G, Bau M (2018) Distribution of major and trace elements in the bolete mushroom
Nowakowski P, Markiewicz-Żukowska R, Soroczyńska J, Puścion-Jakubik A, Mielcarek K, Borawska MH, Socha K (2021) Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J Food Compos Anal 96:103698. 10.1016/j.jfca.2020.103698
Liu S, Liu H, Li J, Wang Y (2022) Research progress on elements of wild edible mushrooms. J Fungi 8:964. https://doi.org/10.103390/jof8090964 PubMed PMC
Zhang D, Frankowska A, Jarzyńska G, Kojta AK, Drewnowska M, Wzdmańska D, Bielawski L, Wang J, Falandysz J (2010) Metals of King Bolete (
Chojnacka A, Jarzyńska G, Drewnowska M, Nnorom ICh, Falandysz J (2012) Mercury in Yellow-cracking Boletes PubMed
Jarzyńska G, Chojnacka A, Dryżałowska A, Nnorom ICh, Falandysz J (2012) Concentrations and bioconcentration factors of minerals by Yellow-cracking Bolete ( PubMed
Damodaran D, Vidya Shetty K, Raj Mohan B (2014) Uptake of certain heavy metals from contaminated soil by mushroom – PubMed
Kojta AK, Gucia M, Krasińska G, Saba M, Nnorom, ICh, Falandysz J (2016) Mineral constituents of edible parasol (
Zsigmond AR, Kántor I, May Y, Urák I, Héberger K (2020) Elemental composition of PubMed
Hanley ML, Vukicevich E, Rice AM, Richardson JB (2024) Uptake of toxic and nutrient elements by foraged edible and medicinal mushrooms (sporocarps) throughout Connecticut River Valley, New England, USA. Environ Sci Pollut Res 31:5526–5539. 10.1007/s11356-023-31290-1 PubMed
Barcan VSh, Kovnatsky EF, Smetannikova MS (1998) Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water Air Soil Pollut 103:173–195. 10.1023/A:1004972632578
Collin-Hansen Ch, Andersen RA, Steinness E (2005) Damage to DNA and lipids in PubMed
Falandysz J (2016) Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator andm mycoremediator of polluted soils? Environ Sci Polltion Res 23:7444–7451. 10.1007/s11356-015-5971-8 PubMed PMC
Świsłowski P, Rajfur M (2018) Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Engineer S 25:557–568. 10.1515/eces-2018-0037
Ediriweera AN, Karunarathna SC, Yapa PN, Schaefer DA, Ranasinghe AK, Suwannarach N, Xu J (2022) Ectomycorrhizal mushrooms as a natural bio-indicator for assessment of heavy metal pollution. Agronomy 12: 1041. 10.3390/agronomy 12051041
Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms; health benefits and risks. Appl Microbiol Biotechnol 97:477–501. 10.1007/s00253-012-4552-8 PubMed PMC
Đurđić S, Stanković V, Ražić S, Mutić J (2021) Lead isotope ratios as tool for elucidation of chemical environment in a system of PubMed
Falandysz J, Zalewska T, Saniewski M, Fernandes AR (2021) An evaluation of the occurrence and trends in PubMed PMC
Strumińska-Parulska D, Falandysz J, Moniakowska A (2021) Beta-emitting radionuclides in wild mushrooms and potential radiotoxicity for their consumers. Trends Food Sci Technol 114:672–683. 10.1016/j.tifs.2021.06.015
Strumińska-Parulska D, Falandysz J, Moniakowska A (2022) On the occurrence, origin and intake of the nuclides 210Po and 210Pb, in sclerotia of PubMed PMC
Malinowska E, Szefer P, Falandysz J (2004) Metals bioaccumulation by bay bolete,
Brzezicha-Cirocka J, Mędyk M, Falandysz J, Szefer P (2016) Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in Eastern Poland. Environ Sci Pollut Res 23:25517–25522. 10.1007/s11356-016-7371-0 PubMed PMC
Árvay J, Hauptvogl M, Demková L, Jančo I, Jakabová S, Mleczek M (2024) GIS-based visualization of elemental distribution in Neoboletus luridiformis fruiting body. Biological Trace Element Research. 10.1007/s12011-024-04320–3Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122: 2–15. 10.1016/j.foodchem.2010.02.045 PubMed PMC
Borovička J, Braeuer S, Sácký J, Karmeník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in PubMed
Borovička J, Konvalinková T, Žigová A, Ďurišová J, Gryndler M, Hršelová H, Kameník J, Leonhardt T, Sácký J (2019) Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus PubMed
Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W (2022) A new mushroom hyperaccumulator: Carmium and arsenic in the ectomycorrhizal basidiomycete PubMed
Braeuer S, Borovička J, Kameník J, Prall E, Stijve T, Goessler W (2020) Is arsenic responsible for the toxicity of the hyperaccumulating mushroom PubMed
Zabowski D, Zasoski RJ, Littke W, Ammirati J (1990) Metal content of fungal sporocarps from urban, rural, and sludge-treated sites. J Environ Qual 19:372–377. 10.2134/jeq1990.00472425001900030004x
Ivanić M, Furdek Turk M, Tkalčec Z, Fiket Ž, Mešić A (2021) Distribution and origin of major, trace, and rare earth elements in wild edible mushrooms: urban vs. forest areas. J Fungi 7:1068. 10.3390/jof7121068 PubMed PMC
Voldrichova P, Chrastny V, Sipkova A, Farkas J, Novak M, Stepanova M, Krachler M, Veselovsky F, Blaha V, Prechova E, Komarek A, Bohdalkova L, Curik J, Mikova J, Erbanova L, Pacherova P (2014) Zinc isotope systematics in snow and ice accretions in Central European mountains. Chem Geol 388:130–141. 10.1016/j.chemgeo.2014.09.008
Novak M, Sipkova A, Chrastny V, Stepanova M, Voldrichova P, Veselovsky F, Prechova E, Blaha V, Curik J, Farkas J, Erbanova L, Bohdalkova L, Pasava J, Mikova J, Komarek A, Krachler M (2016) Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: using soluble and insoluble particles in snow and rime. Environ Pollut 218:1135–1146. 10.1016/j.envpol.2016.08.067 PubMed
Oulehle F, Kopáček J, Chuman T, Černohous V, Hůnová I, Hruška J, Krám P, Lachmanová Z, Navrátil T, Štěpánek P, Tesař M, Evans CD (2016) Predicting sulphur and nitrogen deposition using a simple statistical method. Atmos Environ 140:456–468. 10.1016/j.atmosenv.2016.06.028
Pokorná P, Hovorka J, Hopke PK (2016) Elemental composition and source identification of very fine aerosol particles in a European pollution hot-spot. Atmospher Pollut Res 7:671–679. 10.1016/j.apr.2016.03.001
Prechova E, Sebek O, Novak M, Andronikov A, Strnad L, Chrastny V, Cabala J, Stepanova M, Pasava J, Martinkova E, Pacherova P, Blaha V, Curik J, Veselovsky F, Vitkova H (2023) Spatial and temporal trends in δ PubMed
Stojek K, Czortek P, Bobrowska-Korczak B, Krośniak M, Jaroszewicz B (2024) Fungal species and element type modulate the effects of environmental factors on the concentration of potentially toxic elements in mushrooms. Environ Pollut 353:124152. 10.1016/j.envpol.2024.124152 PubMed
Kokkoris V, Massas I, Polemis E, Koutrotsios G, Zervakis GI (2019) Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci Total Environ 685:280–296. 10.1016/j.scitotenv.2019.05.447 PubMed
Ab Rahman SMS, Naher L, Siddiquee S (2022) Mushroom quality related with various substrates’ bioaccumulation and translocation of heavy metals. Journal of Fungi 8:42. 10.3390/jof8010042 PubMed PMC
Andronikov AV, Andronikova IE, Sebek O, Martinkova E, Stepanova M (2023) Accumulation and within-mushroom distribution of elements in red cracking bolete ( PubMed PMC
Kojta AK, Jarzyńska G, Falandysz J (2012) Mineral composition and heavy metal accumulation capacity of Bay Bolete (
Antonín V, Hagara L, Baier J (2019)
Knauerová M, Slavíček J, Urubová L (2020) Atlas of the mushrooms (a guide to the Czech nature). Edika Publishing House, Prague, Czech Republic, 152 pp. (in Czech)
Vavřín I, Frýda J (1998) Michenerite PdBiTe and froodite PdBi
Pašava J, Vavřín I, Frýda J, Janoušek V, Jelínek E (2003) Geochemistry and mineralogy of the platinum-group elements in the Ransko gabbro-peridotite massif, Bohemian Massif (Czech Republic). Mineralium Deposita 38: 298–311. 10.1007/s00126-002-0343-y
Pokorný R (2013) NPR Ransko, Inventory survey. NPR Ransko, Agentura ochrany přírody a krajiny ČR 52 p. Open-file report (in Czech)
Vossler T, Cernikovsky L, Novak J, Placha H, Krejci B, Nikolova I, Chalupnickova E, Williams R (2015) An investigation of local and regional sources of fine particulate matter in Ostrava, the Czech Republic. Atmospher Pollut Res 6:454–463. 10.5094/APR.2015.050
Kopáček J, Hejzlar J, Krám P, Oulehle P, Posch M (2016) Effect of industrial dust on precipitation chemistry in the Czech Republic. Water Resources 103:30–37. 10.1016/j.waters.2016.07.017 PubMed
Suchara I, Sucharova J (2002) Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water Air Soil Pollut 136:289–316. 10.1023/A:1015235924991
Mleczek M, Siwulski M, Kaczmarek Z, Rissmann I, Sobieralski K, Goliński P (2013) Concentration of the selected trace elements in PubMed
Sotek Z, Stasińska M, Malinowski R, Pilarczyk R, Bąkowska M, Malinowska K, Radke P, Kubus M, Malinowska A, Bukowska A (2023) The role in the human diet of bioaccumulation of selenium, copper, zinc, manganese and iron in edible mushrooms in various habitat conditions of NW Poland – a case study. Sustainability 15:13334. 10.3390/su151813334
Krám P, Hruška J, Shanley JB (2012) Streamwater chemistry in three contrasting monolithologic catchments. App Geochem 27:1854–1863. 10.1016/j.apgeochem.2012.02.020
Krám P, Čuřík J, Veselovský F, Myška O, Hruška J, Štědrá V, Jarchovský T, Buss HL, Chuman T (2017) Hydrochemical fluxes and bedrock chemistry in three contrasting catchments underlain by felsic, mafic and ultramafic rocks. Procedia Earth Planet Sci 17:538–541. 10.1016/j.proeps.2016.12.136
Krám P, Oulehle P, Hruška J, Veselovský F, Čuřík J, Myška O, Novák M, McDowell WH (2019) Calcium and magnesium biochemistry in spruce catchment underlain by felsic, mafic and ultramafic rocks. E3S Web of Conferences 98:06007
Štědrá V, Krám P, Farkaš J (2015) Petrology and whole-rock geochemistry of metabasites from borehole cores in the Na Zeleném and Pluhův Bor catchments in the Slavkov Forest, western Bohemia. Geosci Res Rep 48:103–108 ((in Czech with English abstract))
Štědrá V, Jarchovský T, Krám P (2016) Lithium-rich granite in the Lysina-V1 borehole in the southern part of the Slavkov Forest, western Bohemia. Geosci Res Rep 49:137–142 ((in Czech with English abstract))
Dannhaus N, Wittmann H, Krám P, Christl M, von Blankenburg F (2018) Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric
Klomínský J (2018) The Krkonoše-Jizera composite massif: never ending granite stories. Czech Geological Survey Publishing, Prague, p 145
Andronikov AV, Andronikova IE, Sebek O, Martinkova E, Stepanova M, Vitkova H, Antalova E (2023) Elemental and Cu-Zn isotope compositions of the two bolete mushrooms grown on contrasting substrates. App Geochem 150:105594. 10.1016/j.apgeochem.2023.105594
Dryżałowska A, Falandysz J (2014) Bioconcentration of mercury by mushroom PubMed
Oulehle F, Hleb R, Houška J, Šamonil P, Hofmeister J, Hruška J (2010) Anthropogenic acidification effects in primeval forests in the Transcarpathian Mts. Western Ukraine. Sci Total Environ 408:856–864. 10.1016/j.scitotenv.2009.10.059 PubMed
Busuioc G, Elekes CC, Stihi C, Iordache S, Ciulei SC (2011) The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from PubMed
Jarchovský T, Fediuk F, Klomínský J, Schovánek P (2010) Geochemical discrimination of the Liberec and Jizera granites in the western part of the Krkonoše-Jizera composite massif. Geosci Res Rep 43:219–222 ((in Czech with English abstract))
Souček J (1981) The geochemistry of the Devonian metabasites of the Hrubý and Nízký Jeseník Mts. Časopis pro mineralogii a geologii (Journal for Mineralogy and Geology) 26:126–142 ((in Czech))
Krám P, Oulehle F, Štědrá V, Hruška J, Shanley JB, Minocha R, Traister E (2009) Geoecology of a forest watershed underlain by serpentine in Central Europe. Northeast Nat 5:309–328
Misař Z (1979) Sulfide mineralization in the Ransko gabbro-peridotite massif. Canad Miner 17:299–307
Kaspari M, Powers JS (2016) Biogeochemistry and geographic ecology: embracing all twenty five elements required to build organisms. Am Nat 188:S62-73. 10.1086/687576 PubMed
Galgowska M, Pieterzak-Flećko R (2020) Mineral composition of three popular wild mushrooms from Poland. Molecules 25:3588. 10.3390/molecules2516358 PubMed PMC
Cejpková J, Grzndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumualtion heavy metals, metalloids, and chlotine in ectomycorrhizae from smelter-polluted area. Environ Pollut 218:176–185. 10.1016/j.envpol.2016.08.009 PubMed
Costa-Silva F, Marques G, Matos CC, Barros AIRNA, Nunes FM (2011) Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chem 126:91–96. 10.1016/j.foodchem.2010.10.082
Mirończuk-Chodakowska I, Socha K, Zujko ME, Terlokowska KM, Borawska MH, Witkowska AM (2019) Copper, manganese, selenium, and zinc in wild-growing edible mushrooms from the eastern territory of “Green Lungs of Poland”: nutritional and toxicological implications. Int J Environ Res Public Health 16:3614. 10.3390/ijerph16193614 PubMed PMC
Jorhem L, Sundström B (1995) Levels of some trace elements in edible fungi. Zeitschrift fur Lebensmittel-Untersuchung und Forschung 201:311–316. 10.1007/FB01192723 PubMed
Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health, Part C 26:256–299. 10.1080/10590500802350086 PubMed
Rasalanavho M, Moodley R, Jonnalagadda SB (2020) Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chem 319:126596. 10.1016/j.foodchem.2020.126596 PubMed
Leonhardt T, Borovička J, Sácký J, Šantrůček J, Kamenlík J, Kotrba P (2019) Zn overaccumulating PubMed
Kojta AK, Falandysz J (2016) Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of PubMed
Lavola A, Aphalo PJ, Lehto T (2011) Boron and other elements in sporophores of ectomycorrhizal and saprotrophic fungi. Mycorrhiza 21:155–165. 10.1007/s00572-010-0321-7 PubMed
Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Res 111:3–49. 10.1016/mycres.2006.12.001 PubMed
Landweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilized nutrients from minerals. TRENDS Ecology Evolution 16:248–254. 10.1016/S0169-5347(01)02122-X PubMed
Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Magaz 67:1127–1155. 10.1180/0024641036760154
Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55. 10.1016/j.fbr.2014.05.001
Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366. 10.1080/01490450490462066
Dusengemungu L, Kasali G, Gwanama C, Mubemba B (2021) Overview of fungal bioleaching of metals. Environ Advance 5:100083. 10.1016/j.envadv.2021.100083
Gast CH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17:789–799. 10.1016/0045-6535(88)90258-5
Jarzyńska G, Falandysz J (2012) Trace element profile of Slate Bolete (Leccinum duriusculum) mushroom and associated upper soil horizon. J Geochem Explor 121:69–75. 10.1016/j.gexplo.2012.07.001
Ivanić M, Fiket Ž, Medunić G, Furdek Turk M, Marović G, Senčar J, Kniewald G (2019) Multi-elemental composition of soil, mosses and mushrooms and assessment of natural and artificial radioactivity of a pristine temperate rainforest system (Slavonia, Croatia). Chemosphere 215:668–677. 10.1016/j.chemosphere.2018.10.108 PubMed
Vukojević V, Đurđić S, Stefanović S, Trifković J, Čakmak D, Perović V, Mutić J (2019) Scandium, yttrium, and lanthanide contents in soil from Serbia and their accumulation in the mushroom PubMed
Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J (2014) On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazardous Mater 280:79–88. 10.1016/j.hazmat.2014.07.050 PubMed
Dhir RK, de Brito J, Ghataora GS, Lye CQ (2018) Use of glass cullet in geotechnical applications. In: Lye CQ (ed) RK Dhir, J de Brito GS Ghataora. Woodhead Publishing Series in Civil and Stricture Engineering, Woodhead Publishing, Sustainable construction materials, pp 257–296
Borovička J, Mihaljevič M, Gryndler M, Kubrová J, Žigová A, Hršelová A, Řanda Z (2014) Lead isotopic signatures of saprotrophic macrofungi of various origins: tracing for lead sources and possible applications in geomycology. Appl Geochem 43:114–120. 10.1016/j.apgeochem.2014.02.012
Muszyńska B, Rojowski J, Łazarz M, Kała K, Dobosz K, Opoka W (2018) The accumulation and release of Cd and Pb from edible mushrooms and their biomass. Pol J Environ Stud 27:223–230. 10.15244/pjoes/74898
Kautmanová I, Brachtýr O, Gbúrová Štubňová E, Szabóová D, Šottník P, Lalinská-Voleková B (2021) Potentially toxic elements in macromycetes and plants from areas affected by antimony mining. Biologia 76:2133–2159. 10.10007/s11756-021-00788-9