The evolution of huge Y chromosomes in Coccinia grandis and its sister, Coccinia schimperi

. 2022 May 09 ; 377 (1850) : 20210294. [epub] 20220321

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35306898

Microscopically dimorphic sex chromosomes in plants are rare, reducing our ability to study them. One difficulty has been the paucity of cultivatable species pairs for cytogenetic, genomic and experimental work. Here, we study the newly recognized sisters Coccinia grandis and Coccinia schimperi, both with large Y chromosomes as we here show for Co. schimperi. We built genetic maps for male and female Co. grandis using a full-sibling family, inferred gene sex-linkage, and, with Co. schimperi transcriptome data, tested whether X- and Y-alleles group by species or by sex. Most sex-linked genes for which we could include outgroups grouped the X- and Y-alleles by species, but some 10% instead grouped the two species' X-alleles. There was no relationship between XY synonymous-site divergences in these genes and gene position on the non-recombining part of the X, suggesting recombination arrest shortly before or after species divergence, here dated to about 3.6 Ma. Coccinia grandis and Co. schimperi are the species pair with the most heteromorphic sex chromosomes in vascular plants (the condition in their sister remains unknown), and future work could use them to study mechanisms of Y chromosome enlargement and parallel degeneration, or to test Haldane's rule about lower hybrid fitness in the heterogametic sex. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.

Zobrazit více v PubMed

Ming R, Bendahmane A, Renner SS. 2011. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 62, 485-514. (10.1146/annurev-arplant-042110-103914) PubMed DOI

Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588-1596. (10.3732/ajb.1400196) PubMed DOI

Papadopulos AS, Chester M, Ridout K, Filatov DA. 2015. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl Acad. Sci. USA 112, 13 021-13 026. (10.1073/pnas.1508454112) PubMed DOI PMC

Krasovec M, Zhang Y, Filatov DA. 2020. The location of the pseudoautosomal boundary in Silene latifolia. Genese 11, 610. (10.3390/genes11060610) PubMed DOI PMC

Sousa A, Fuchs J, Renner SS. 2013. Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of Cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet. Genome Res. 139, 107-118. (10.1159/000345370) PubMed DOI

Fruchard C, et al. 2020. Evidence for dosage compensation in Coccinia grandis, a plant with a highly heteromorphic XY system. Genes (Basel) 11, 1-18. (10.3390/genes11070787) PubMed DOI PMC

Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, Feng C, Käfer J, Karlov G, Marais GAB. 2020. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res. 30, 164-172. (10.1101/gr.251207.119) PubMed DOI PMC

Muyle A, Zemp N, Deschamps C, Mousset S, Widmer A, Marais GA. 2012. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biol. 10, e1001308. (10.1371/journal.pbio.1001308) PubMed DOI PMC

Holstein N. 2015. Monograph of Coccinia (Cucurbitaceae). PhytoKeys 54, 1-166. (10.3897/phytokeys.54.3285) PubMed DOI PMC

Holstein N, Renner SS. 2011. A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC Evol. Biol. 11, 28. (10.1186/1471-2148-11-28) PubMed DOI PMC

Kumar LS, Vishveshwaraiah S. 1952. Sex mechanism in Coccinia indica Wight and Arn. Nature 170, 330-331. (10.1038/170330a0) PubMed DOI

Sousa A, Bellot S, Fuchs J, Houben A, Renner SS. 2016. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant J. 88, 387-396. (10.1111/tpj.13254) PubMed DOI

Sousa A, Fuchs J, Renner SS. 2017. Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover. Chromosom. Res. 25, 191-200. (10.1007/s10577-017-9555-y) PubMed DOI

Naudin C. 1859. Revue des Cucurbitacées cultivées au Muséum, en 1859. Ann. Sci. Nat. Bot. Ser. 4, 79-164.

Naudin C. 1862. Cucurbitacées cultivées au muséum d'histoire naturelle en 1862. Ann. Sci. Nat. Bot. Ser. 4, 159-208.

Marza VD, Cerchez N. 1967. Charles Naudin, a pioneer of contemporary biology. J. d'Agriculture Tropicale et de Botanique Appl. 14, 369-401. (10.3406/jatba.1967.2944) DOI

Devani RS, Sinha S, Banerjee J, Sinha RK, Bendahmane A, Banerjee AK. 2017. De novo transcriptome assembly from flower buds of dioecious, gynomonoecious and chemically masculinized female Coccinia grandis reveals genes associated with sex expression and modification. BMC Plant Biol. 17, 241. (10.1186/s12870-017-1187-z) PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. (10.1093/bioinformatics/btu170) PubMed DOI PMC

Haas BJ, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-1512. (10.1038/nprot.2013.084) PubMed DOI PMC

Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. 2019. RnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8, giz100. (10.1093/gigascience/giz100) PubMed DOI PMC

Gilbert D. 2013. Gene-omes built from mRNA seq not genome DNA. In 7th annual arthropod genomics symposium. Notre Dame. F1000Research 5, 1695. (10.7490/f1000research.1112594.1) DOI

Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227-245. (10.1007/978-1-4939-9173-0_14) PubMed DOI

Guo J, Xu W, Hu Y, Huang J, Zhao Y, Zhang L, Huang CH, Ma H. 2020. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol. Plant 13, 1117-1133. (10.1016/j.molp.2020.05.011) PubMed DOI

Schaefer H, Renner SS. 2011. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60, 122-138. (10.1002/tax.601011) DOI

Muyle A, Käfer J, Zemp N, Mousset S, Picard F, Marais GA. 2016. SEX-DETector: a probabilistic approach to study sex chromosomes in non-model organisms. Genome Biol. Evol. 8, 2530-2543. (10.1093/gbe/evw172) PubMed DOI PMC

Liao Y, Smyth GK, Shi W. 2013. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108. (10.1093/nar/gkt214) PubMed DOI PMC

Tsagkogeorga G, Cahais V, Galtier N. 2012. The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol. Evol. 4, 740-749. (10.1093/gbe/evs054) PubMed DOI PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26. (10.1038/nbt.1754) PubMed DOI PMC

Rastas P. 2017. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 33, 3726-3732. (10.1093/bioinformatics/btx494) PubMed DOI

Rastas P, Calboli FCF, Guo B, Shikano T, Merilä J. 2016. Construction of ultra-dense linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. Genome Biol. Evol. 8, 78-93. (10.1093/gbe/evv250) PubMed DOI PMC

Holtz Y, David J, Ranwez V. 2017. The genetic map comparator: a user-friendly application to display and compare genetic maps. Bioinformatics 33, btw816. (10.1093/bioinformatics/btw816) PubMed DOI

R Core Team. 2020. R: a language and environment for statistical computing (v.4.0.2). Vienna, Austria: R Foundation for Statistical Computing. (https://cran.r-project.org/)

Ouellette LA, Reid RW, Blanchard SG, Brouwer CR. 2018. LinkageMapView-rendering high-resolution linkage and QTL maps. Bioinformatics 34, 306-307. (10.1093/bioinformatics/btx576) PubMed DOI PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinf. 10, 421. (10.1186/1471-2105-10-421) PubMed DOI PMC

Ranwez V, Harispe S, Delsuc F, Douzery EJP. 2011. MACSE: Multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS ONE 6, e22594. (10.1371/journal.pone.0022594) PubMed DOI PMC

Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. (10.1080/10635150701472164) PubMed DOI

Ronquist F, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. (10.1093/sysbio/sys029) PubMed DOI PMC

Rambaut A, Suchard MA, Xie D, Drummond AJ. 2013. Tracer v1.7.1. See https://github.com/beast-dev/tracer/releases/latest (accessed Oct 2021).

Rambaut A. 2012. FigTree v1.4.0. See http://tree.bio.ed.ac.uk/software/figtree/ (accessed Oct 2021).

Stephens TG, Bhattacharya D, Ragan MA, Chan CX. 2016. PhySortR: a fast, flexible tool for sorting phylogenetic trees in R. PeerJ 4, e2038. (10.7717/peerj.2038) PubMed DOI PMC

Larget BR, Kotha SK, Dewey CN, Ané C. 2010. BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26, 2910-2911. (10.1093/bioinformatics/btq539) PubMed DOI

Sukumaran J, Holder MT. 2010. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569-1571. (10.1093/bioinformatics/btq228) PubMed DOI

Wickham H. 2016. Ggplot2: elegant graphics for data analysis. New York, NY: Springer.

Emms DM, Kelly S. 2019. DendroPy: a OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20, 238. PubMed PMC

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591. (10.1093/molbev/msm088) PubMed DOI

Schaefer H, Heibl C, Renner SS. 2009. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. R. Soc. B 276, 843-851. (10.1098/rspb.2008.1447) PubMed DOI PMC

Bacovsky V, Čegan R, Šimoníková D, Hřibová E, Hobza R. 2020. The formation of sex chromosomes in Silene latifolia and S. dioica was accompanied by multiple chromosomal rearrangements. Front. Plant Sci. 11, 205. (10.3389/fpls.2020.00205) PubMed DOI PMC

Nicolas M, et al. 2005. A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol. 3, e4. (10.1371/journal.pbio.0030004) PubMed DOI PMC

Prentout D, Stajner N, Cerenak A, Tricou T, Brochier-Armanet C, Jakse J, Käfer J, Marais GAB. 2021. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. New Phytol. 231, 1599-1611. (10.1111/nph.17456) PubMed DOI

Haldane JBS. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101-109. (10.1007/BF02983075) DOI

Brothers AN, Delph LF. 2010. Haldane's rule is extended to plants with sex chromosomes. Evolution 64, 3643-3648. (10.1111/j.1558-5646.2010.01095.x) PubMed DOI

Demuth JP, Flanagan RJ, Delph LF. 2014. Genetic architecture of isolation between two species of Silene with sex chromosomes and Haldane's rule. Evolution 68, 332-342. (10.1111/evo.12269) PubMed DOI

Janousek B, Gogela R, Bacovsky V, Renner SS. 2022. The evolution of huge Y chromosomes in Coccinia grandis and its sister, Coccinia schimperi. Figshare. PubMed PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5879864

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...