LoopGrafter: a web tool for transplanting dynamical loops for protein engineering
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35438789
PubMed Central
PMC9252738
DOI
10.1093/nar/gkac249
PII: 6570728
Knihovny.cz E-zdroje
- MeSH
- internet MeSH
- molekulární modely MeSH
- proteinové inženýrství MeSH
- proteiny * genetika chemie MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
The transplantation of loops between structurally related proteins is a compelling method to improve the activity, specificity and stability of enzymes. However, despite the interest of loop regions in protein engineering, the available methods of loop-based rational protein design are scarce. One particular difficulty related to loop engineering is the unique dynamism that enables them to exert allosteric control over the catalytic function of enzymes. Thus, when engaging in a transplantation effort, such dynamics in the context of protein structure need consideration. A second practical challenge is identifying successful excision points for the transplantation or grafting. Here, we present LoopGrafter (https://loschmidt.chemi.muni.cz/loopgrafter/), a web server that specifically guides in the loop grafting process between structurally related proteins. The server provides a step-by-step interactive procedure in which the user can successively identify loops in the two input proteins, calculate their geometries, assess their similarities and dynamics, and select a number of loops to be transplanted. All possible different chimeric proteins derived from any existing recombination point are calculated, and 3D models for each of them are constructed and energetically evaluated. The obtained results can be interactively visualized in a user-friendly graphical interface and downloaded for detailed structural analyses.
Zobrazit více v PubMed
Arnold F.H. Innovation by evolution: bringing new chemistry to life (Nobel lecture). Angew. Chem. Int. Ed. 2019; 58:14420–14426. PubMed
Weinstein J., Khersonsky O., Fleishman S.J.. Practically useful protein-design methods combining phylogenetic and atomistic calculations. Curr. Opin. Struct. Biol. 2020; 63:58–64. PubMed PMC
Dodani S.C., Kiss G., Cahn J.K.B., Su Y., Pande V.S., Arnold F.H.. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 2016; 8:419–425. PubMed PMC
Kreß N., Halder J.M., Rapp L.R., Hauer B.. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr. Opin. Chem. Biol. 2018; 47:109–116. PubMed
Park H.-S., Nam S.-H., Lee J.K., Yoon C.N., Mannervik B., Benkovic S.J., Kim H.-S.. Design and evolution of new catalytic activity with an existing protein scaffold. Science. 2006; 311:535–538. PubMed
Tawfik D.S. Biochemistry. Loop grafting and the origin of enzyme species. Science. 2006; 311:475–476. PubMed
Nestl B.M., Hauer B.. Engineering of flexible loops in enzymes. ACS Catal. 2016; 4:3201–3211.
Bonet J., Segura J., Planas-Iglesias J., Oliva B., Fernandez-Fuentes N.. Frag’r’Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bioinformatics. 2014; 30:1935–1936. PubMed
Murphy P.M., Bolduc J.M., Gallaher J.L., Stoddard B.L., Baker D. Alteration of enzyme specificity by computational loop remodeling and design. Proc. Natl Acad. Sci. U.S.A. 2009; 106:9215–9220. PubMed PMC
Marek M., Chaloupkova R., Prudnikova T., Sato Y., Rezacova P., Nagata Y., Kuta Smatanova I., Damborsky J.. Structural and catalytic effects of surface loop–helix transplantation within haloalkane dehalogenase family. Comput. Struct. Biotechnol. J. 2020; 18:1352–1362. PubMed PMC
Schenkmayerova A., Pinto G.P., Toul M., Marek M., Hernychova L., Planas-Iglesias J., Daniel Liskova V., Pluskal D., Vasina M., Emond S.et al. .. Engineering the protein dynamics of an ancestral luciferase. Nat. Commun. 2021; 12:3616. PubMed PMC
Tóth-Petróczy Á., Tawfik D.S.. The robustness and innovability of protein folds. Curr. Opin. Struct. Biol. 2014; 26:131–138. PubMed
Trudeau D.L., Tawfik D.S.. Protein engineers turned evolutionists—the quest for the optimal starting point. Curr. Opin. Biotechnol. 2019; 60:46–52. PubMed
Romero-Rivera A., Garcia-Borràs M., Osuna S.. Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal. 2017; 7:8524–8532. PubMed PMC
Yu H., Dalby P.A.. Exploiting correlated molecular-dynamics networks to counteract enzyme activity–stability trade-off. Proc. Natl Acad. Sci. U.S.A. 2018; 115:E12192–E12200. PubMed PMC
Crean R.M., Biler M., van der Kamp M.W., Hengge A.C., Kamerlin S.C.L.. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J. Am. Chem. Soc. 2021; 143:3830–3845. PubMed PMC
Shirvanizadeh N., Vriend G., Arab S.S.. Loop modelling 1.0. J. Mol. Graph. Model. 2018; 84:64–68. PubMed
Karami Y., Rey J., Postic G., Murail S., Tufféry P., de Vries S.J.. DaReUS-Loop: a web server to model multiple loops in homology models. Nucleic Acids Res. 2019; 47:W423–W428. PubMed PMC
Ko J., Lee D., Park H., Coutsias E.A., Lee J., Seok C.. The FALC-Loop web server for protein loop modeling. Nucleic Acids Res. 2011; 39:W210–W214. PubMed PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.. The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–242. PubMed PMC
Kabsch W., Sander C.. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. PubMed
Joosten R.P., Beek T.A.H., Krieger E., Hekkelman M.L., Hooft R.W.W., Schneider R., Sander C., Vriend G.. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2010; 39:D411–D419. PubMed PMC
Bonet J., Planas-Iglesias J., Garcia-Garcia J., Marín-López M.A., Fernandez-Fuentes N., Oliva B.. ArchDB 2014: structural classification of loops in proteins. Nucleic Acids Res. 2013; 42:D315–D319. PubMed PMC
Kuzmanic A., Pannu N.S., Zagrovic B.. X-ray refinement significantly underestimates the level of microscopic heterogeneity in biomolecular crystals. Nat. Commun. 2014; 5:3220. PubMed PMC
Bahar I., Atilgan A.R., Erman B.. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold. Des. 1997; 2:173–181. PubMed
Doruker P., Atilgan A.R., Bahar I.. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to α-amylase inhibitor. Proteins Struct. Funct. Bioinformatics. 2000; 40:512–524. PubMed
Eyal E., Yang L.-W., Bahar I.. Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics. 2006; 22:2619–2627. PubMed
Bakan A., Dutta A., Mao W., Liu Y., Chennubhotla C., Lezon T.R., Bahar I.. Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics. 2014; 30:2681–2683. PubMed PMC
Shindyalov I.N., Bourne P.E.. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. Des. Sel. 1998; 11:739–747. PubMed
Šali A., Blundell T.L.. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993; 234:779–815. PubMed
Webb B., Sali A.. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. 2016; 54:5.6.1–5.6.37. PubMed PMC
Shen M., Sali A.. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006; 15:2507–2524. PubMed PMC
Tyka M.D., Keedy D.A., André I., DiMaio F., Song Y., Richardson D.C., Richardson J.S., Baker D. Alternate states of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 2011; 405:607–618. PubMed PMC
O’Meara M.J., Leaver-Fay A., Tyka M.D., Stein A., Houlihan K., DiMaio F., Bradley P., Kortemme T., Baker D., Snoeyink J.et al. .. Combined covalent–electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J. Chem. Theory Comput. 2015; 11:609–622. PubMed PMC
Loening A.M., Fenn T.D., Gambhir S.S.. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 2007; 374:1017–1028. PubMed PMC
Chaloupkova R., Liskova V., Toul M., Markova K., Sebestova E., Hernychova L., Marek M., Pinto G.P., Pluskal D., Waterman J.et al. .. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 2019; 9:4810–4823.
Thanki N., Zeelen J.P., Mathieu M., Jaenicke R., Abagyan R.A., Wierenga R.K., Schliebs W.. Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop. Protein Eng. Des. Sel. 1997; 10:159–167. PubMed
Hu X., Wang H., Ke H., Kuhlman B.. High-resolution design of a protein loop. Proc. Natl Acad. Sci. U.S.A. 2007; 104:17668–17673. PubMed PMC
Wójcik M., Szala K., van Merkerk R., Quax W.J., Boersma Y.L.. Engineering the specificity of Streptococcus pyogenes sortase A by loop grafting. Proteins Struct. Funct. Bioinformatics. 2020; 88:1394–1400. PubMed PMC
Marques S.M., Planas-Iglesias J., Damborsky J.. Web based tools for computational enzyme design. Curr. Opin. Struct. Biol. 2021; 69:19–34. PubMed
Barozet A., Chacón P., Cortés J.. Current approaches to flexible loop modeling. Curr. Res. Struct. Biol. 2021; 3:187–191. PubMed PMC
Ferruz N., Noske J., Höcker B.. ProtLego: a Python package for the analysis and design of chimeric proteins. Bioinformatics. 2021; 37:3182–3189. PubMed PMC
Berenger F., Simoncini D., Voet A., Shrestha R., Zhang K.Y.J.. Fragger: a protein fragment picker for structural queries. F1000Research. 2017; 6:1722. PubMed PMC