LoopGrafter: a web tool for transplanting dynamical loops for protein engineering

. 2022 Jul 05 ; 50 (W1) : W465-W473.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35438789

The transplantation of loops between structurally related proteins is a compelling method to improve the activity, specificity and stability of enzymes. However, despite the interest of loop regions in protein engineering, the available methods of loop-based rational protein design are scarce. One particular difficulty related to loop engineering is the unique dynamism that enables them to exert allosteric control over the catalytic function of enzymes. Thus, when engaging in a transplantation effort, such dynamics in the context of protein structure need consideration. A second practical challenge is identifying successful excision points for the transplantation or grafting. Here, we present LoopGrafter (https://loschmidt.chemi.muni.cz/loopgrafter/), a web server that specifically guides in the loop grafting process between structurally related proteins. The server provides a step-by-step interactive procedure in which the user can successively identify loops in the two input proteins, calculate their geometries, assess their similarities and dynamics, and select a number of loops to be transplanted. All possible different chimeric proteins derived from any existing recombination point are calculated, and 3D models for each of them are constructed and energetically evaluated. The obtained results can be interactively visualized in a user-friendly graphical interface and downloaded for detailed structural analyses.

Zobrazit více v PubMed

Arnold F.H. Innovation by evolution: bringing new chemistry to life (Nobel lecture). Angew. Chem. Int. Ed. 2019; 58:14420–14426. PubMed

Weinstein J., Khersonsky O., Fleishman S.J.. Practically useful protein-design methods combining phylogenetic and atomistic calculations. Curr. Opin. Struct. Biol. 2020; 63:58–64. PubMed PMC

Dodani S.C., Kiss G., Cahn J.K.B., Su Y., Pande V.S., Arnold F.H.. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 2016; 8:419–425. PubMed PMC

Kreß N., Halder J.M., Rapp L.R., Hauer B.. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr. Opin. Chem. Biol. 2018; 47:109–116. PubMed

Park H.-S., Nam S.-H., Lee J.K., Yoon C.N., Mannervik B., Benkovic S.J., Kim H.-S.. Design and evolution of new catalytic activity with an existing protein scaffold. Science. 2006; 311:535–538. PubMed

Tawfik D.S. Biochemistry. Loop grafting and the origin of enzyme species. Science. 2006; 311:475–476. PubMed

Nestl B.M., Hauer B.. Engineering of flexible loops in enzymes. ACS Catal. 2016; 4:3201–3211.

Bonet J., Segura J., Planas-Iglesias J., Oliva B., Fernandez-Fuentes N.. Frag’r’Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bioinformatics. 2014; 30:1935–1936. PubMed

Murphy P.M., Bolduc J.M., Gallaher J.L., Stoddard B.L., Baker D. Alteration of enzyme specificity by computational loop remodeling and design. Proc. Natl Acad. Sci. U.S.A. 2009; 106:9215–9220. PubMed PMC

Marek M., Chaloupkova R., Prudnikova T., Sato Y., Rezacova P., Nagata Y., Kuta Smatanova I., Damborsky J.. Structural and catalytic effects of surface loop–helix transplantation within haloalkane dehalogenase family. Comput. Struct. Biotechnol. J. 2020; 18:1352–1362. PubMed PMC

Schenkmayerova A., Pinto G.P., Toul M., Marek M., Hernychova L., Planas-Iglesias J., Daniel Liskova V., Pluskal D., Vasina M., Emond S.et al. .. Engineering the protein dynamics of an ancestral luciferase. Nat. Commun. 2021; 12:3616. PubMed PMC

Tóth-Petróczy Á., Tawfik D.S.. The robustness and innovability of protein folds. Curr. Opin. Struct. Biol. 2014; 26:131–138. PubMed

Trudeau D.L., Tawfik D.S.. Protein engineers turned evolutionists—the quest for the optimal starting point. Curr. Opin. Biotechnol. 2019; 60:46–52. PubMed

Romero-Rivera A., Garcia-Borràs M., Osuna S.. Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal. 2017; 7:8524–8532. PubMed PMC

Yu H., Dalby P.A.. Exploiting correlated molecular-dynamics networks to counteract enzyme activity–stability trade-off. Proc. Natl Acad. Sci. U.S.A. 2018; 115:E12192–E12200. PubMed PMC

Crean R.M., Biler M., van der Kamp M.W., Hengge A.C., Kamerlin S.C.L.. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J. Am. Chem. Soc. 2021; 143:3830–3845. PubMed PMC

Shirvanizadeh N., Vriend G., Arab S.S.. Loop modelling 1.0. J. Mol. Graph. Model. 2018; 84:64–68. PubMed

Karami Y., Rey J., Postic G., Murail S., Tufféry P., de Vries S.J.. DaReUS-Loop: a web server to model multiple loops in homology models. Nucleic Acids Res. 2019; 47:W423–W428. PubMed PMC

Ko J., Lee D., Park H., Coutsias E.A., Lee J., Seok C.. The FALC-Loop web server for protein loop modeling. Nucleic Acids Res. 2011; 39:W210–W214. PubMed PMC

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.. The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–242. PubMed PMC

Kabsch W., Sander C.. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. PubMed

Joosten R.P., Beek T.A.H., Krieger E., Hekkelman M.L., Hooft R.W.W., Schneider R., Sander C., Vriend G.. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2010; 39:D411–D419. PubMed PMC

Bonet J., Planas-Iglesias J., Garcia-Garcia J., Marín-López M.A., Fernandez-Fuentes N., Oliva B.. ArchDB 2014: structural classification of loops in proteins. Nucleic Acids Res. 2013; 42:D315–D319. PubMed PMC

Kuzmanic A., Pannu N.S., Zagrovic B.. X-ray refinement significantly underestimates the level of microscopic heterogeneity in biomolecular crystals. Nat. Commun. 2014; 5:3220. PubMed PMC

Bahar I., Atilgan A.R., Erman B.. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold. Des. 1997; 2:173–181. PubMed

Doruker P., Atilgan A.R., Bahar I.. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to α-amylase inhibitor. Proteins Struct. Funct. Bioinformatics. 2000; 40:512–524. PubMed

Eyal E., Yang L.-W., Bahar I.. Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics. 2006; 22:2619–2627. PubMed

Bakan A., Dutta A., Mao W., Liu Y., Chennubhotla C., Lezon T.R., Bahar I.. Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics. 2014; 30:2681–2683. PubMed PMC

Shindyalov I.N., Bourne P.E.. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. Des. Sel. 1998; 11:739–747. PubMed

Šali A., Blundell T.L.. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993; 234:779–815. PubMed

Webb B., Sali A.. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. 2016; 54:5.6.1–5.6.37. PubMed PMC

Shen M., Sali A.. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006; 15:2507–2524. PubMed PMC

Tyka M.D., Keedy D.A., André I., DiMaio F., Song Y., Richardson D.C., Richardson J.S., Baker D. Alternate states of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 2011; 405:607–618. PubMed PMC

O’Meara M.J., Leaver-Fay A., Tyka M.D., Stein A., Houlihan K., DiMaio F., Bradley P., Kortemme T., Baker D., Snoeyink J.et al. .. Combined covalent–electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J. Chem. Theory Comput. 2015; 11:609–622. PubMed PMC

Loening A.M., Fenn T.D., Gambhir S.S.. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 2007; 374:1017–1028. PubMed PMC

Chaloupkova R., Liskova V., Toul M., Markova K., Sebestova E., Hernychova L., Marek M., Pinto G.P., Pluskal D., Waterman J.et al. .. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 2019; 9:4810–4823.

Thanki N., Zeelen J.P., Mathieu M., Jaenicke R., Abagyan R.A., Wierenga R.K., Schliebs W.. Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop. Protein Eng. Des. Sel. 1997; 10:159–167. PubMed

Hu X., Wang H., Ke H., Kuhlman B.. High-resolution design of a protein loop. Proc. Natl Acad. Sci. U.S.A. 2007; 104:17668–17673. PubMed PMC

Wójcik M., Szala K., van Merkerk R., Quax W.J., Boersma Y.L.. Engineering the specificity of Streptococcus pyogenes sortase A by loop grafting. Proteins Struct. Funct. Bioinformatics. 2020; 88:1394–1400. PubMed PMC

Marques S.M., Planas-Iglesias J., Damborsky J.. Web based tools for computational enzyme design. Curr. Opin. Struct. Biol. 2021; 69:19–34. PubMed

Barozet A., Chacón P., Cortés J.. Current approaches to flexible loop modeling. Curr. Res. Struct. Biol. 2021; 3:187–191. PubMed PMC

Ferruz N., Noske J., Höcker B.. ProtLego: a Python package for the analysis and design of chimeric proteins. Bioinformatics. 2021; 37:3182–3189. PubMed PMC

Berenger F., Simoncini D., Voet A., Shrestha R., Zhang K.Y.J.. Fragger: a protein fragment picker for structural queries. F1000Research. 2017; 6:1722. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace