SUMOylation is not a prerequisite for HSF1's role in stress protection and transactivation

. 2025 Jul 05 ; 15 (1) : 24077. [epub] 20250705

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40617887

Grantová podpora
22-17102S Grantová Agentura České Republiky
00209805 Ministry of Health Development of Research Organization
CZ.02.01.01/00/22_008/0004644 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 40617887
PubMed Central PMC12228814
DOI 10.1038/s41598-025-08735-3
PII: 10.1038/s41598-025-08735-3
Knihovny.cz E-zdroje

Targeting tumor proteostasis has emerged as a promising strategy in anticancer therapy, particularly through Hsp90 inhibition, which has shown clinical potential. However, the efficacy of Hsp90 inhibitors is limited by the activation of HSF1, a master regulator of the heat shock response (HSR), which mitigates proteotoxic stress by inducing protective chaperones. To address this limitation, we investigated the role of HSF1 SUMOylation in modulating its activity and its impact on Hsp90 inhibitor efficacy. We generated HSF1 mutants with lysine-to-arginine substitutions at five SUMOylation sites and studied their function in H1299 lung carcinoma cells with HSF1/HSF2 knockout, which lack a functional HSR. Unexpectedly, these mutants retained full transcriptional activity during the early phase of the heat shock response, mimicking the initial stress response of wild-type HSF1. SUMOylation inhibition using Subasumstat also led to altered nuclear stress bodies morphology but did not impair Hsp70 induction or enhance Hsp90 inhibitor cytotoxicity. Our findings reveal that SUMOylation is dispensable for HSF1 activation and transactivation capacity during the early phase of HSR. These results refine our understanding of HSF1 regulation and suggest that alternative strategies targeting HSF1 stability and degradation may enhance the therapeutic efficacy of proteostasis-targeting cancer therapies.

Zobrazit více v PubMed

Ma, X. N., Li, M. Y., Qi, G. Q., Wei, L. N. & Zhang, D. K. SUMOylation at the crossroads of gut health: insights into physiology and pathology. PubMed PMC

Molfetta, R., Petillo, S., Cippitelli, M. & Paolini, R. SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses. PubMed PMC

Roos-Mattjus, P. & Sistonen, L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. PubMed

Dai, C. & Sampson, S. B. HSF1: guardian of proteostasis in Cancer. PubMed PMC

Lang, B. J. et al. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. PubMed

Pessa, J. C., Joutsen, J. & Sistonen, L. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis. PubMed

Backe, S. J., Sager, R. A., Woodford, M. R., Makedon, A. M. & Mollapour, M. Post-translational modifications of Hsp90 and translating the chaperone code. PubMed PMC

Nitika, Porter, C. M., Truman, A. W. & Truttmann, M. C. Post-translational modifications of Hsp70 family proteins: expanding the chaperone code. PubMed PMC

Liebelt, F. et al. SUMOylation and the HSF1-Regulated chaperone network converge to promote proteostasis in response to heat shock. PubMed PMC

Enserink, J. M. Sumo and the cellular stress response. PubMed PMC

Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. PubMed PMC

Tempé, D., Piechaczyk, M. & Bossis, G. SUMO under stress. PubMed

Rosonina, E., Akhter, A., Dou, Y. & Babu, J. Sri theivakadadcham, V. S. Regulation of transcription factors by sumoylation. PubMed PMC

Johnson, E. S. Protein modification by SUMO. PubMed

Hay, R. T. SUMO-specific proteases: a twist in the tail. PubMed

Hay, R. T. & SUMO A history of modification. PubMed

Eifler, K. & Vertegaal, A. C. O. SUMOylation-Mediated regulation of cell cycle progression and Cancer. PubMed PMC

Anckar, J. et al. Inhibition of DNA binding by differential sumoylation of heat shock factors. PubMed PMC

Brunet Simioni, M. et al. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. PubMed

Hietakangas, V. et al. Phosphorylation of Serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. PubMed PMC

Hilgarth, R. S., Hong, Y., Park-Sarge, O. K. & Sarge, K. D. Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification. PubMed

Hong, Y. et al. Regulation of heat shock transcription factor 1 by Stress-induced SUMO-1 Modification *. PubMed

Brackett, C. & Blagg, B. S. J. Current status of sumoylation inhibitors. PubMed PMC

Kim, H. S. et al. TAK-981, a sumoylation inhibitor, suppresses AML growth immune-independently. PubMed PMC

Langston, S. P. et al. Discovery of TAK-981, a First-in-Class inhibitor of SUMO-Activating enzyme for the treatment of Cancer. PubMed

Lightcap, E. S. et al. A small molecule sumoylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. PubMed PMC

Hendriks, I. A. et al. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. PubMed

Smith, R. S. et al. HSF2 cooperates with HSF1 to drive a transcriptional program critical for the malignant state. PubMed PMC

Yang, J., Hu, M. & Wang, Y. Protocol for inducible piggybac transposon system for efficient gene overexpression in human pluripotent stem cells. PubMed PMC

Zhang, C., Zheng, W., Mortuza, S. M., Li, Y. & Zhang, Y. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. PubMed PMC

Zheng, W. et al. Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data. PubMed PMC

Simoncik, O. et al. Direct activation of HSF1 by macromolecular crowding and misfolded proteins. PubMed PMC

Kunz, K. et al. SUMO signaling by hypoxic inactivation of SUMO-Specific isopeptidases. PubMed

Yang, W. et al. Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier Transgenic mice: putative protective proteins/pathways. PubMed PMC

Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. PubMed

Li, X. et al. Unveiling the impact of sumoylation at K298 site of heat shock factor 1 on glioblastoma malignant progression. PubMed PMC

Raychaudhuri, S. et al. Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. PubMed

Omkar, S. et al. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. PubMed PMC

Ptak, C. & Wozniak, R. W. SUMO and nucleocytoplasmic transport. in SUMO Regulation of Cellular Processes (ed Wilson, V. G.) 111–126 (Springer International Publishing, Cham, 10.1007/978-3-319-50044-7_7. (2017). PubMed

Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. PubMed

Saggu, G. et al. Subasumstat, a first-in-class inhibitor of SUMO-activating enzyme, demonstrates dose-dependent target engagement and sumoylation inhibition, leading to rapid activation of innate and adaptive immune responses in the dose escalation portion of a phase 1/2 clinical study.

Nakamura, A. et al. The sumoylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. PubMed PMC

Wittig, I., Karas, M. & Schägger, H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. PubMed

Wittig, I., Braun, H. P. & Schägger, H. Blue native PAGE. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...