SBILib: a handle for protein modeling and engineering
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37796837
PubMed Central
PMC10589914
DOI
10.1093/bioinformatics/btad613
PII: 7291855
Knihovny.cz E-zdroje
- MeSH
- makromolekulární látky MeSH
- molekulární struktura MeSH
- proteiny MeSH
- RNA * MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- makromolekulární látky MeSH
- proteiny MeSH
- RNA * MeSH
SUMMARY: The SBILib Python library provides an integrated platform for the analysis of macromolecular structures and interactions. It combines simple 3D file parsing and workup methods with more advanced analytical tools. SBILib includes modules for macromolecular interactions, loops, super-secondary structures, and biological sequences, as well as wrappers for external tools with which to integrate their results and facilitate the comparative analysis of protein structures and their complexes. The library can handle macromolecular complexes formed by proteins and/or nucleic acid molecules (i.e. DNA and RNA). It is uniquely capable of parsing and calculating protein super-secondary structure and loop geometry. We have compiled a list of example scenarios which SBILib may be applied to and provided access to these within the library. AVAILABILITY AND IMPLEMENTATION: SBILib is made available on Github at https://github.com/structuralbioinformatics/SBILib.
Zobrazit více v PubMed
Aguirre-Plans J, Meseguer A, Molina-Fernandez R et al. SPServer: split-statistical potentials for the analysis of protein structures and protein–protein interactions. BMC Bioinformatics 2021;22:4–13. PubMed PMC
Berman HM, Westbrook J, Feng Z et al. The protein data bank. Nucleic Acids Res 2000;28:235–42. PubMed PMC
Bonet J, Planas-Iglesias J, Garcia-Garcia J et al. ArchDB 2014: structural classification of loops in proteins. Nucleic Acids Res 2014a;42:D315–9. PubMed PMC
Bonet J, Segura J, Planas-Iglesias J et al. Frag’r’Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bioinformatics 2014b;30:1935–6. PubMed
Camacho C, Coulouris G, Avagyan V et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421–9. PubMed PMC
Cock PA, Antao T, Chang JT et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009;25:1422–3. PubMed PMC
Eswar N, Eramian D, Webb B et al. Protein structure modeling with MODELLER. Methods Mol Biol. 2008:426:145-59. doi: 10.1007/978-1-60327-058-8_8. PubMed DOI
Fernandez-Fuentes N, Dybas JM, Fiser A. Structural characteristics of novel protein folds. PLoS Comput Biol 2010;6:e1000750. PubMed PMC
Fernandez-Fuentes N, Zhai J, Fiser A. ArchPRED: a template based loop structure prediction server. Nucleic Acids Res 2006;34:W173–6. PubMed PMC
Fornes O, Meseguer A, Aguirre-Plans J et al. ModCRE: a structure homology-modeling approach to predict TF binding in cis-regulatory elements. bioRxiv, 2022, 10.1101/2022.04.17.488557. DOI
Fu L, Niu B, Zhu Z et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150–2. PubMed PMC
Harris CR, Millman KJ, Van Der Walt SJ et al. Array programming with NumPy. Nature 2020;585:357–62. PubMed PMC
Ireland SM, Martin AC. Atomium—a python structure parser. Bioinformatics 2020;36:2750–4. PubMed PMC
Jones PT, Dear PH, Foote J et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986;321:522–5. PubMed
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolym Original Res Biomol 1983;22:2577–637. PubMed
Krieger E, Nabuurs SB, Vriend G. Homology modeling. Methods Biochem Anal 2003;44:509–23. PubMed
Kunzmann P, Müller TD, Greil M et al. Biotite: new tools for a versatile Python bioinformatics library. BMC Bioinformatics 2023;24:236. PubMed PMC
Ma XH, Wang CX, Li CH et al. A fast empirical approach to binding free energy calculations based on protein interface information. Protein Eng 2002;15:677–81. PubMed
Meseguer A, Dominguez L, Bota PM et al. Using collections of structural models to predict changes of binding affinity caused by mutations in protein–protein interactions. Protein Sci 2020;29:2112–30. PubMed PMC
Mirela-Bota P, Aguirre-Plans J, Meseguer A et al. Galaxy InteractoMIX: an integrated computational platform for the study of protein–protein interaction data. J Mol Biol 2021;433:166656. PubMed
Rodrigues JP, Teixeira JM, Trellet M et al. pdb-tools: a swiss army knife for molecular structures. F1000Res 2018;7:1961. PubMed PMC
Rost B. Twilight zone of protein sequence alignments. Protein Eng 1999;12:85–94. PubMed
Schenkmayerova A, Pinto GP, Toul M et al. Engineering the protein dynamics of an ancestral luciferase. Nat Commun 2021;12:3616. PubMed PMC
Smith JW, Tachias K, Madison EL. Protein loop grafting to construct a variant of tissue-type plasminogen activator that binds platelet integrin αIIbβ3 (∗). J Biol Chem 1995;270:30486–90. PubMed
Tang H, Shi K, Shi C et al. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. J Biol Chem 2019;294:18398–407. PubMed PMC
Touw WG, Baakman C, Black J et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res 2015;43:D364–8. PubMed PMC
Varadi M, Anyango S, Deshpande M et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439–44. PubMed PMC
Virtanen P, Gommers R, Oliphant TE et al.; SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 2020;17:352–272. PubMed PMC
Yue P, Li Z, Moult J. Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol 2005;353:459–73. PubMed
Zhang S, Krieger JM, Zhang Y et al. ProDy 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python. Bioinformatics 2021;37:3657–9. PubMed PMC