SBILib: a handle for protein modeling and engineering

. 2023 Oct 03 ; 39 (10) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37796837

SUMMARY: The SBILib Python library provides an integrated platform for the analysis of macromolecular structures and interactions. It combines simple 3D file parsing and workup methods with more advanced analytical tools. SBILib includes modules for macromolecular interactions, loops, super-secondary structures, and biological sequences, as well as wrappers for external tools with which to integrate their results and facilitate the comparative analysis of protein structures and their complexes. The library can handle macromolecular complexes formed by proteins and/or nucleic acid molecules (i.e. DNA and RNA). It is uniquely capable of parsing and calculating protein super-secondary structure and loop geometry. We have compiled a list of example scenarios which SBILib may be applied to and provided access to these within the library. AVAILABILITY AND IMPLEMENTATION: SBILib is made available on Github at https://github.com/structuralbioinformatics/SBILib.

Zobrazit více v PubMed

Aguirre-Plans J, Meseguer A, Molina-Fernandez R  et al.  SPServer: split-statistical potentials for the analysis of protein structures and protein–protein interactions. BMC Bioinformatics  2021;22:4–13. PubMed PMC

Berman HM, Westbrook J, Feng Z  et al.  The protein data bank. Nucleic Acids Res  2000;28:235–42. PubMed PMC

Bonet J, Planas-Iglesias J, Garcia-Garcia J  et al.  ArchDB 2014: structural classification of loops in proteins. Nucleic Acids Res  2014a;42:D315–9. PubMed PMC

Bonet J, Segura J, Planas-Iglesias J  et al.  Frag’r’Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bioinformatics  2014b;30:1935–6. PubMed

Camacho C, Coulouris G, Avagyan V  et al.  BLAST+: architecture and applications. BMC Bioinformatics  2009;10:421–9. PubMed PMC

Cock PA, Antao T, Chang JT  et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics  2009;25:1422–3. PubMed PMC

Eswar N, Eramian D, Webb B  et al.  Protein structure modeling with MODELLER. Methods Mol Biol. 2008:426:145-59. doi: 10.1007/978-1-60327-058-8_8. PubMed DOI

Fernandez-Fuentes N, Dybas JM, Fiser A.  Structural characteristics of novel protein folds. PLoS Comput Biol  2010;6:e1000750. PubMed PMC

Fernandez-Fuentes N, Zhai J, Fiser A.  ArchPRED: a template based loop structure prediction server. Nucleic Acids Res  2006;34:W173–6. PubMed PMC

Fornes O, Meseguer A, Aguirre-Plans J  et al. ModCRE: a structure homology-modeling approach to predict TF binding in cis-regulatory elements. bioRxiv, 2022, 10.1101/2022.04.17.488557. DOI

Fu L, Niu B, Zhu Z  et al.  CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics  2012;28:3150–2. PubMed PMC

Harris CR, Millman KJ, Van Der Walt SJ  et al.  Array programming with NumPy. Nature  2020;585:357–62. PubMed PMC

Ireland SM, Martin AC.  Atomium—a python structure parser. Bioinformatics  2020;36:2750–4. PubMed PMC

Jones PT, Dear PH, Foote J  et al.  Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature  1986;321:522–5. PubMed

Kabsch W, Sander C.  Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolym Original Res Biomol  1983;22:2577–637. PubMed

Krieger E, Nabuurs SB, Vriend G.  Homology modeling. Methods Biochem Anal  2003;44:509–23. PubMed

Kunzmann P, Müller TD, Greil M  et al.  Biotite: new tools for a versatile Python bioinformatics library. BMC Bioinformatics  2023;24:236. PubMed PMC

Ma XH, Wang CX, Li CH  et al.  A fast empirical approach to binding free energy calculations based on protein interface information. Protein Eng  2002;15:677–81. PubMed

Meseguer A, Dominguez L, Bota PM  et al.  Using collections of structural models to predict changes of binding affinity caused by mutations in protein–protein interactions. Protein Sci  2020;29:2112–30. PubMed PMC

Mirela-Bota P, Aguirre-Plans J, Meseguer A  et al.  Galaxy InteractoMIX: an integrated computational platform for the study of protein–protein interaction data. J Mol Biol  2021;433:166656. PubMed

Rodrigues JP, Teixeira JM, Trellet M  et al.  pdb-tools: a swiss army knife for molecular structures. F1000Res  2018;7:1961. PubMed PMC

Rost B.  Twilight zone of protein sequence alignments. Protein Eng  1999;12:85–94. PubMed

Schenkmayerova A, Pinto GP, Toul M  et al.  Engineering the protein dynamics of an ancestral luciferase. Nat Commun  2021;12:3616. PubMed PMC

Smith JW, Tachias K, Madison EL.  Protein loop grafting to construct a variant of tissue-type plasminogen activator that binds platelet integrin αIIbβ3 (∗). J Biol Chem  1995;270:30486–90. PubMed

Tang H, Shi K, Shi C  et al.  Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. J Biol Chem  2019;294:18398–407. PubMed PMC

Touw WG, Baakman C, Black J  et al.  A series of PDB-related databanks for everyday needs. Nucleic Acids Res  2015;43:D364–8. PubMed PMC

Varadi M, Anyango S, Deshpande M  et al.  AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res  2022;50:D439–44. PubMed PMC

Virtanen P, Gommers R, Oliphant TE  et al.; SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods  2020;17:352–272. PubMed PMC

Yue P, Li Z, Moult J.  Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol  2005;353:459–73. PubMed

Zhang S, Krieger JM, Zhang Y  et al.  ProDy 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python. Bioinformatics  2021;37:3657–9. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...