Structure-Activity Relationships and Biological Insights into PSMA-617 and Its Derivatives with Modified Lipophilic Linker Regions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40028088
PubMed Central
PMC11865982
DOI
10.1021/acsomega.4c10142
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
PSMA-617 is recognized as a benchmark ligand for prostate-specific membrane antigen (PSMA) owing to its broad utilization in prostate cancer (PCa) targeted radionuclide therapy. In this study, the structure-activity relationships (SAR) of PSMA-617 and two novel analogs featuring modified linkers were investigated. In compounds P17 and P18, the 2-naphthyl-l-Ala moiety was replaced with a less lipophilic 3-styryl-l-Ala moiety while the cyclohexyl ring in P18 was replaced with a phenyl group. The first ever crystal structure of the PSMA/PSMA-617 complex reported here revealed a folded conformation of the PSMA-617 linker while for the PSMA/P17 and PSMA/P18 complexes, the extended orientations of the linkers revealed linker flexibility within the PSMA cavity, a change in binding that can be exploited for the structure-guided design of PSMA-targeting agents. Despite structural differences from PSMA-617, the analogs maintained high PSMA inhibition potency, cellular binding, and internalization. In vivo biodistribution studies revealed comparable tumor uptake across all three compounds with P18 displaying higher spleen accumulation, likely due to phenyl ring lipophilicity. These SAR findings provide a strategic framework for the rational design of PSMA ligands, paving the way for the development of next-generation theranostic agents for PCa.
Zobrazit více v PubMed
Bray F.; Laversanne M.; Weiderpass E.; Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127 (16), 3029–3030. 10.1002/cncr.33587. PubMed DOI
Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca-Cancer J. Clin. 2021, 71 (3), 209–249. 10.3322/caac.21660. PubMed DOI
Hoffman A.; Amiel G. E. The Impact of PSMA PET/CT on Modern Prostate Cancer Management and Decision Making-The Urological Perspective. Cancers 2023, 15 (13), 3402.10.3390/cancers15133402. PubMed DOI PMC
Kopka K.; Benesova M.; Barinka C.; Haberkorn U.; Babich J. Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J. Nucl. Med. 2017, 58 (Supplement 2), 17S–26S. 10.2967/jnumed.116.186775. PubMed DOI
Israeli R. S.; Powell C. T.; Corr J. G.; Fair W. R.; Heston W. D. Expression of the prostate-specific membrane antigen. Cancer Res. 1994, 54 (7), 1807–1811. PubMed
Israeli R. S.; Powell C. T.; Fair W. R.; Heston W. D. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 1993, 53 (2), 227–230. PubMed
Fallah J.; Agrawal S.; Gittleman H.; Fiero M. H.; Subramaniam S.; John C.; Chen W.; Ricks T. K.; Niu G.; Fotenos A.; et al. FDA Approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2023, 29 (9), 1651–1657. 10.1158/1078-0432.CCR-22-2875. PubMed DOI PMC
Balfour H.MHRA approves Pluvicto® and Locametz® for prostate cancer. European Pharmaceutical Review, 2022.
Eckford C.European Commission approves Pluvicto® for prostate cancer; European Pharmaceutical Review, 2022.
Benesova M.; Bauder-Wust U.; Schafer M.; Klika K. D.; Mier W.; Haberkorn U.; Kopka K.; Eder M. Linker Modification Strategies To Control the Prostate-Specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J. Med. Chem. 2016, 59 (5), 1761–1775. 10.1021/acs.jmedchem.5b01210. PubMed DOI
Benesova M.; Schafer M.; Bauder-Wust U.; Afshar-Oromieh A.; Kratochwil C.; Mier W.; Haberkorn U.; Kopka K.; Eder M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56 (6), 914–920. 10.2967/jnumed.114.147413. PubMed DOI
Cardinale J.; Roscher M.; Schafer M.; Geerlings M.; Benesova M.; Bauder-Wust U.; Remde Y.; Eder M.; Novakova Z.; Motlova L.; et al. Development of PSMA-1007-Related Series of (18)F-Labeled Glu-Ureido-Type PSMA Inhibitors. J. Med. Chem. 2020, 63 (19), 10897–10907. 10.1021/acs.jmedchem.9b01479. PubMed DOI
Baranski A. C.; Schafer M.; Bauder-Wust U.; Wacker A.; Schmidt J.; Liolios C.; Mier W.; Haberkorn U.; Eisenhut M.; Kopka K.; et al. Improving the Imaging Contrast of (68)Ga-PSMA-11 by Targeted Linker Design: Charged Spacer Moieties Enhance the Pharmacokinetic Properties. Bioconjugate Chem. 2017, 28 (9), 2485–2492. 10.1021/acs.bioconjchem.7b00458. PubMed DOI
Hofman M. S.; Emmett L.; Sandhu S.; Iravani A.; Joshua A. M.; Goh J. C.; Pattison D. A.; Tan T. H.; Kirkwood I. D.; Ng S.; et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 2021, 397 (10276), 797–804. 10.1016/S0140-6736(21)00237-3. PubMed DOI
Sartor O.; de Bono J.; Chi K. N.; Fizazi K.; Herrmann K.; Rahbar K.; Tagawa S. T.; Nordquist L. T.; Vaishampayan N.; El-Haddad G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385 (12), 1091–1103. 10.1056/NEJMoa2107322. PubMed DOI PMC
Liu Y.; Chen M. M.; Bian G. L.; Liu J. F.; Song L. Spectroscopic investigation of the interaction of the toxicant, 2-naphthylamine, with bovine serum albumin. J. Biochem. Mol. Toxic 2011, 25 (6), 362–368. 10.1002/jbt.20400. PubMed DOI
Wang X.; Xing Y.; Su J.; Wang C.; Wang Z.; Yu Y.; Xu H.; Ma D. Synthesis of two new naphthalene-containing compounds and their bindings to human serum albumin. J. Biomol. Struct. Dyn. 2021, 39 (10), 3435–3448. 10.1080/07391102.2020.1764867. PubMed DOI
Temml V.; Kollar J.; Schonleitner T.; Holl A.; Schuster D.; Kutil Z. Combination of In Silico and In Vitro Screening to Identify Novel Glutamate Carboxypeptidase II Inhibitors. J. Chem. Inf. Model. 2023, 63 (4), 1249–1259. 10.1021/acs.jcim.2c01269. PubMed DOI PMC
Barinka C.; Byun Y.; Dusich C. L.; Banerjee S. R.; Chen Y.; Castanares M.; Kozikowski A. P.; Mease R. C.; Pomper M. G.; Lubkowski J. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization. J. Med. Chem. 2008, 51 (24), 7737–7743. 10.1021/jm800765e. PubMed DOI PMC
Pavlícek J.; Ptácek J.; Barinka C. Glutamate Carboxypeptidase II: An Overview of Structural Studies and Their Importance for Structure-Based Drug Design and Deciphering the Reaction Mechanism of the Enzyme. Curr. Med. Chem. 2012, 19 (9), 1300–1309. 10.2174/092986712799462667. PubMed DOI
Zhang A. X.; Murelli R. P.; Barinka C.; Michel J.; Cocleaza A.; Jorgensen W. L.; Lubkowski J.; Spiegel D. A. A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc. 2010, 132 (36), 12711–12716. 10.1021/ja104591m. PubMed DOI PMC
Anilkumar G.; Rajasekaran S. A.; Wang S.; Hankinson O.; Bander N. H.; Rajasekaran A. K. Prostate-specific membrane antigen association with filamin A modulates its internalization and NAALADase activity. Cancer Res. 2003, 63 (10), 2645–2648. PubMed
Banerjee S. R.; Kumar V.; Lisok A.; Plyku D.; Novakova Z.; Brummet M.; Wharram B.; Barinka C.; Hobbs R.; Pomper M. G. Evaluation of (111)In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen. J. Nucl. Med. 2019, 60 (3), 400–406. 10.2967/jnumed.118.214403. PubMed DOI PMC
Tafreshi N. K.; Kil H.; Pandya D. N.; Tichacek C. J.; Doligalski M. L.; Budzevich M. M.; Delva N. C.; Langsen M. L.; Vallas J. A.; Boulware D. C.; et al. Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting Peptide Receptor Radiotherapy. ACS Pharmacol. Transl. Sci. 2021, 4 (2), 953–965. 10.1021/acsptsci.1c00035. PubMed DOI PMC
Simons B. W.; Turtle N. F.; Ulmert D. H.; Abou D. S.; Thorek D. L. J. PSMA expression in the Hi-Myc model; extended utility of a representative model of prostate adenocarcinoma for biological insight and as a drug discovery tool. Prostate 2019, 79 (6), 678–685. 10.1002/pros.23770. PubMed DOI PMC
Thiele N. A.; Brown V.; Kelly J. M.; Amor-Coarasa A.; Jermilova U.; MacMillan S. N.; Nikolopoulou A.; Ponnala S.; Ramogida C. F.; Robertson A. K. H.; et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem., Int. Ed. Engl. 2017, 56 (46), 14712–14717. 10.1002/anie.201709532. PubMed DOI
Lundmark F.; Olanders G.; Rinne S. S.; Abouzayed A.; Orlova A.; Rosenstrom U. Design, Synthesis, and Evaluation of Linker-Optimised PSMA-Targeting Radioligands. Pharmaceutics 2022, 14 (5), 1098.10.3390/pharmaceutics14051098. PubMed DOI PMC
Kazuta N.; Nakashima K.; Tarumizu Y.; Sato T.; Maya Y.; Watanabe H.; Ono M. Novel Radiotheranostic Ligands Targeting Prostate-Specific Membrane Antigen Based on Dual Linker Approach. Mol. Pharm. 2025, 22, 377.10.1021/acs.molpharmaceut.4c00974. PubMed DOI
Uspenskaya A. A.; Machulkin A. E.; Nimenko E. A.; Shafikov R. R.; Petrov S. A.; Skvortsov D. A.; Beloglazkina E. K.; Majouga A. G. Influence of the dipeptide linker configuration on the activity of PSMA ligands. Mendeleev Commun. 2020, 30 (6), 756–759. 10.1016/j.mencom.2020.11.022. DOI
Huang S. S.; DiFilippo F. P.; Lindner D. J.; Heston W. D. A novel PSMA-targeting tracer with highly negatively charged linker demonstrates decreased salivary gland uptake in mice compared to [(68)Ga]Ga-PSMA-11. EJNMMI Radiopharm. Chem. 2024, 9 (1), 7.10.1186/s41181-024-00237-3. PubMed DOI PMC
Lau J.; Lee H.; Rousseau J.; Benard F.; Lin K. S. Application of Cleavable Linkers to Improve Therapeutic Index of Radioligand Therapies. Molecules 2022, 27 (15), 4959.10.3390/molecules27154959. PubMed DOI PMC
Klika K. D. The Application of Simple and Easy to Implement Decoupling Pulse Scheme Combinations to Effect Decoupling of Large J Values with Reduced Artifacts. Int. J. Spectr. 2014, 2014, 289638.10.1155/2014/289638. DOI
Virta P.; Koch A.; Roslund M. U.; Mattjus P.; Kleinpeter E.; Kronberg L.; Sjoholm R.; Klika K. D. Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives. Org. Biomol. Chem. 2005, 3 (16), 2924–2929. 10.1039/b505508c. PubMed DOI
Klika K. D.; Bernat J.; Imrich J.; Chomca I.; Sillanpaa R.; Pihlaja K. Unexpected formation of a spiro acridine and fused ring system from the reaction between an N-acridinylmethyl-substituted thiourea and bromoacetonitrile under basic conditions. J. Org. Chem. 2001, 66 (12), 4416–4418. 10.1021/jo001695p. PubMed DOI
Balentová E.; Imrich J.; Bernát J.; Suchá L.; Vilková M.; Prónayová N.; Kristian P.; Pihlaja K.; Klika K. D. Stereochemistry, Tautomerism, and Reactions of Acridinyl Thiosemicarbazides in the Synthesis of 1,3-Thiazolidines. J. Heterocycl. Chem. 2006, 43 (3), 645–656. 10.1002/jhet.5570430318. DOI
Mäki J.; Tähtinen P.; Kronberg L.; Klika K. D. Restricted rotation/tautomeric equilibrium anddetermination of the site and extent of protonation inbi-imidazole nucleosides by multinuclear NMR andGIAO-DFT calculations. J. Phys. Org. Chem. 2005, 18, 240–249. 10.1002/poc.840. DOI
Barinka C.; Ptacek J.; Richter A.; Novakova Z.; Morath V.; Skerra A. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA). Protein Eng. Des. Sel. 2016, 29 (3), 105–115. 10.1093/protein/gzv065. PubMed DOI
Sparta K. M.; Krug M.; Heinemann U.; Mueller U.; Weiss M. S. Xdsapp2.0. J. Appl. Crystallogr. 2016, 49, 1085–1092. 10.1107/S1600576716004416. DOI
Barinka C.; Starkova J.; Konvalinka J.; Lubkowski J. A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2007, 63 (3), 150–153. 10.1107/S174430910700379X. PubMed DOI PMC
Kovalevskiy O.; Nicholls R. A.; Long F.; Carlon A.; Murshudov G. N. Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr., Sect. D: Struct. Biol. 2018, 74, 215–227. 10.1107/S2059798318000979. PubMed DOI PMC
Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and development of Coot. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66 (4), 486–501. 10.1107/S0907444910007493. PubMed DOI PMC
Long F.; Nicholls R. A.; Emsley P.; Gražulis S.; Merkys A.; Vaitkus A.; Murshudov G. N. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr, Sect. D: Struct. Biol. 2017, 73 (2), 112–122. 10.1107/S2059798317000067. PubMed DOI PMC
Gore S.; Sanz Garcia E.; Hendrickx P. M. S.; Gutmanas A.; Westbrook J. D.; Yang H.; Feng Z.; Baskaran K.; Berrisford J. M.; Hudson B. P.; et al. Validation of Structures in the Protein Data Bank. Structure 2017, 25 (12), 1916–1927. 10.1016/j.str.2017.10.009. PubMed DOI PMC