Structure-Activity Relationships and Biological Insights into PSMA-617 and Its Derivatives with Modified Lipophilic Linker Regions

. 2025 Feb 25 ; 10 (7) : 7077-7090. [epub] 20250212

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40028088

PSMA-617 is recognized as a benchmark ligand for prostate-specific membrane antigen (PSMA) owing to its broad utilization in prostate cancer (PCa) targeted radionuclide therapy. In this study, the structure-activity relationships (SAR) of PSMA-617 and two novel analogs featuring modified linkers were investigated. In compounds P17 and P18, the 2-naphthyl-l-Ala moiety was replaced with a less lipophilic 3-styryl-l-Ala moiety while the cyclohexyl ring in P18 was replaced with a phenyl group. The first ever crystal structure of the PSMA/PSMA-617 complex reported here revealed a folded conformation of the PSMA-617 linker while for the PSMA/P17 and PSMA/P18 complexes, the extended orientations of the linkers revealed linker flexibility within the PSMA cavity, a change in binding that can be exploited for the structure-guided design of PSMA-targeting agents. Despite structural differences from PSMA-617, the analogs maintained high PSMA inhibition potency, cellular binding, and internalization. In vivo biodistribution studies revealed comparable tumor uptake across all three compounds with P18 displaying higher spleen accumulation, likely due to phenyl ring lipophilicity. These SAR findings provide a strategic framework for the rational design of PSMA ligands, paving the way for the development of next-generation theranostic agents for PCa.

Zobrazit více v PubMed

Bray F.; Laversanne M.; Weiderpass E.; Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127 (16), 3029–3030. 10.1002/cncr.33587. PubMed DOI

Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca-Cancer J. Clin. 2021, 71 (3), 209–249. 10.3322/caac.21660. PubMed DOI

Hoffman A.; Amiel G. E. The Impact of PSMA PET/CT on Modern Prostate Cancer Management and Decision Making-The Urological Perspective. Cancers 2023, 15 (13), 3402.10.3390/cancers15133402. PubMed DOI PMC

Kopka K.; Benesova M.; Barinka C.; Haberkorn U.; Babich J. Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J. Nucl. Med. 2017, 58 (Supplement 2), 17S–26S. 10.2967/jnumed.116.186775. PubMed DOI

Israeli R. S.; Powell C. T.; Corr J. G.; Fair W. R.; Heston W. D. Expression of the prostate-specific membrane antigen. Cancer Res. 1994, 54 (7), 1807–1811. PubMed

Israeli R. S.; Powell C. T.; Fair W. R.; Heston W. D. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 1993, 53 (2), 227–230. PubMed

Fallah J.; Agrawal S.; Gittleman H.; Fiero M. H.; Subramaniam S.; John C.; Chen W.; Ricks T. K.; Niu G.; Fotenos A.; et al. FDA Approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2023, 29 (9), 1651–1657. 10.1158/1078-0432.CCR-22-2875. PubMed DOI PMC

Balfour H.MHRA approves Pluvicto® and Locametz® for prostate cancer. European Pharmaceutical Review, 2022.

Eckford C.European Commission approves Pluvicto® for prostate cancer; European Pharmaceutical Review, 2022.

Benesova M.; Bauder-Wust U.; Schafer M.; Klika K. D.; Mier W.; Haberkorn U.; Kopka K.; Eder M. Linker Modification Strategies To Control the Prostate-Specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J. Med. Chem. 2016, 59 (5), 1761–1775. 10.1021/acs.jmedchem.5b01210. PubMed DOI

Benesova M.; Schafer M.; Bauder-Wust U.; Afshar-Oromieh A.; Kratochwil C.; Mier W.; Haberkorn U.; Kopka K.; Eder M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56 (6), 914–920. 10.2967/jnumed.114.147413. PubMed DOI

Cardinale J.; Roscher M.; Schafer M.; Geerlings M.; Benesova M.; Bauder-Wust U.; Remde Y.; Eder M.; Novakova Z.; Motlova L.; et al. Development of PSMA-1007-Related Series of (18)F-Labeled Glu-Ureido-Type PSMA Inhibitors. J. Med. Chem. 2020, 63 (19), 10897–10907. 10.1021/acs.jmedchem.9b01479. PubMed DOI

Baranski A. C.; Schafer M.; Bauder-Wust U.; Wacker A.; Schmidt J.; Liolios C.; Mier W.; Haberkorn U.; Eisenhut M.; Kopka K.; et al. Improving the Imaging Contrast of (68)Ga-PSMA-11 by Targeted Linker Design: Charged Spacer Moieties Enhance the Pharmacokinetic Properties. Bioconjugate Chem. 2017, 28 (9), 2485–2492. 10.1021/acs.bioconjchem.7b00458. PubMed DOI

Hofman M. S.; Emmett L.; Sandhu S.; Iravani A.; Joshua A. M.; Goh J. C.; Pattison D. A.; Tan T. H.; Kirkwood I. D.; Ng S.; et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 2021, 397 (10276), 797–804. 10.1016/S0140-6736(21)00237-3. PubMed DOI

Sartor O.; de Bono J.; Chi K. N.; Fizazi K.; Herrmann K.; Rahbar K.; Tagawa S. T.; Nordquist L. T.; Vaishampayan N.; El-Haddad G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385 (12), 1091–1103. 10.1056/NEJMoa2107322. PubMed DOI PMC

Liu Y.; Chen M. M.; Bian G. L.; Liu J. F.; Song L. Spectroscopic investigation of the interaction of the toxicant, 2-naphthylamine, with bovine serum albumin. J. Biochem. Mol. Toxic 2011, 25 (6), 362–368. 10.1002/jbt.20400. PubMed DOI

Wang X.; Xing Y.; Su J.; Wang C.; Wang Z.; Yu Y.; Xu H.; Ma D. Synthesis of two new naphthalene-containing compounds and their bindings to human serum albumin. J. Biomol. Struct. Dyn. 2021, 39 (10), 3435–3448. 10.1080/07391102.2020.1764867. PubMed DOI

Temml V.; Kollar J.; Schonleitner T.; Holl A.; Schuster D.; Kutil Z. Combination of In Silico and In Vitro Screening to Identify Novel Glutamate Carboxypeptidase II Inhibitors. J. Chem. Inf. Model. 2023, 63 (4), 1249–1259. 10.1021/acs.jcim.2c01269. PubMed DOI PMC

Barinka C.; Byun Y.; Dusich C. L.; Banerjee S. R.; Chen Y.; Castanares M.; Kozikowski A. P.; Mease R. C.; Pomper M. G.; Lubkowski J. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization. J. Med. Chem. 2008, 51 (24), 7737–7743. 10.1021/jm800765e. PubMed DOI PMC

Pavlícek J.; Ptácek J.; Barinka C. Glutamate Carboxypeptidase II: An Overview of Structural Studies and Their Importance for Structure-Based Drug Design and Deciphering the Reaction Mechanism of the Enzyme. Curr. Med. Chem. 2012, 19 (9), 1300–1309. 10.2174/092986712799462667. PubMed DOI

Zhang A. X.; Murelli R. P.; Barinka C.; Michel J.; Cocleaza A.; Jorgensen W. L.; Lubkowski J.; Spiegel D. A. A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc. 2010, 132 (36), 12711–12716. 10.1021/ja104591m. PubMed DOI PMC

Anilkumar G.; Rajasekaran S. A.; Wang S.; Hankinson O.; Bander N. H.; Rajasekaran A. K. Prostate-specific membrane antigen association with filamin A modulates its internalization and NAALADase activity. Cancer Res. 2003, 63 (10), 2645–2648. PubMed

Banerjee S. R.; Kumar V.; Lisok A.; Plyku D.; Novakova Z.; Brummet M.; Wharram B.; Barinka C.; Hobbs R.; Pomper M. G. Evaluation of (111)In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen. J. Nucl. Med. 2019, 60 (3), 400–406. 10.2967/jnumed.118.214403. PubMed DOI PMC

Tafreshi N. K.; Kil H.; Pandya D. N.; Tichacek C. J.; Doligalski M. L.; Budzevich M. M.; Delva N. C.; Langsen M. L.; Vallas J. A.; Boulware D. C.; et al. Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting Peptide Receptor Radiotherapy. ACS Pharmacol. Transl. Sci. 2021, 4 (2), 953–965. 10.1021/acsptsci.1c00035. PubMed DOI PMC

Simons B. W.; Turtle N. F.; Ulmert D. H.; Abou D. S.; Thorek D. L. J. PSMA expression in the Hi-Myc model; extended utility of a representative model of prostate adenocarcinoma for biological insight and as a drug discovery tool. Prostate 2019, 79 (6), 678–685. 10.1002/pros.23770. PubMed DOI PMC

Thiele N. A.; Brown V.; Kelly J. M.; Amor-Coarasa A.; Jermilova U.; MacMillan S. N.; Nikolopoulou A.; Ponnala S.; Ramogida C. F.; Robertson A. K. H.; et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem., Int. Ed. Engl. 2017, 56 (46), 14712–14717. 10.1002/anie.201709532. PubMed DOI

Lundmark F.; Olanders G.; Rinne S. S.; Abouzayed A.; Orlova A.; Rosenstrom U. Design, Synthesis, and Evaluation of Linker-Optimised PSMA-Targeting Radioligands. Pharmaceutics 2022, 14 (5), 1098.10.3390/pharmaceutics14051098. PubMed DOI PMC

Kazuta N.; Nakashima K.; Tarumizu Y.; Sato T.; Maya Y.; Watanabe H.; Ono M. Novel Radiotheranostic Ligands Targeting Prostate-Specific Membrane Antigen Based on Dual Linker Approach. Mol. Pharm. 2025, 22, 377.10.1021/acs.molpharmaceut.4c00974. PubMed DOI

Uspenskaya A. A.; Machulkin A. E.; Nimenko E. A.; Shafikov R. R.; Petrov S. A.; Skvortsov D. A.; Beloglazkina E. K.; Majouga A. G. Influence of the dipeptide linker configuration on the activity of PSMA ligands. Mendeleev Commun. 2020, 30 (6), 756–759. 10.1016/j.mencom.2020.11.022. DOI

Huang S. S.; DiFilippo F. P.; Lindner D. J.; Heston W. D. A novel PSMA-targeting tracer with highly negatively charged linker demonstrates decreased salivary gland uptake in mice compared to [(68)Ga]Ga-PSMA-11. EJNMMI Radiopharm. Chem. 2024, 9 (1), 7.10.1186/s41181-024-00237-3. PubMed DOI PMC

Lau J.; Lee H.; Rousseau J.; Benard F.; Lin K. S. Application of Cleavable Linkers to Improve Therapeutic Index of Radioligand Therapies. Molecules 2022, 27 (15), 4959.10.3390/molecules27154959. PubMed DOI PMC

Klika K. D. The Application of Simple and Easy to Implement Decoupling Pulse Scheme Combinations to Effect Decoupling of Large J Values with Reduced Artifacts. Int. J. Spectr. 2014, 2014, 289638.10.1155/2014/289638. DOI

Virta P.; Koch A.; Roslund M. U.; Mattjus P.; Kleinpeter E.; Kronberg L.; Sjoholm R.; Klika K. D. Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives. Org. Biomol. Chem. 2005, 3 (16), 2924–2929. 10.1039/b505508c. PubMed DOI

Klika K. D.; Bernat J.; Imrich J.; Chomca I.; Sillanpaa R.; Pihlaja K. Unexpected formation of a spiro acridine and fused ring system from the reaction between an N-acridinylmethyl-substituted thiourea and bromoacetonitrile under basic conditions. J. Org. Chem. 2001, 66 (12), 4416–4418. 10.1021/jo001695p. PubMed DOI

Balentová E.; Imrich J.; Bernát J.; Suchá L.; Vilková M.; Prónayová N.; Kristian P.; Pihlaja K.; Klika K. D. Stereochemistry, Tautomerism, and Reactions of Acridinyl Thiosemicarbazides in the Synthesis of 1,3-Thiazolidines. J. Heterocycl. Chem. 2006, 43 (3), 645–656. 10.1002/jhet.5570430318. DOI

Mäki J.; Tähtinen P.; Kronberg L.; Klika K. D. Restricted rotation/tautomeric equilibrium anddetermination of the site and extent of protonation inbi-imidazole nucleosides by multinuclear NMR andGIAO-DFT calculations. J. Phys. Org. Chem. 2005, 18, 240–249. 10.1002/poc.840. DOI

Barinka C.; Ptacek J.; Richter A.; Novakova Z.; Morath V.; Skerra A. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA). Protein Eng. Des. Sel. 2016, 29 (3), 105–115. 10.1093/protein/gzv065. PubMed DOI

Sparta K. M.; Krug M.; Heinemann U.; Mueller U.; Weiss M. S. Xdsapp2.0. J. Appl. Crystallogr. 2016, 49, 1085–1092. 10.1107/S1600576716004416. DOI

Barinka C.; Starkova J.; Konvalinka J.; Lubkowski J. A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2007, 63 (3), 150–153. 10.1107/S174430910700379X. PubMed DOI PMC

Kovalevskiy O.; Nicholls R. A.; Long F.; Carlon A.; Murshudov G. N. Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr., Sect. D: Struct. Biol. 2018, 74, 215–227. 10.1107/S2059798318000979. PubMed DOI PMC

Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and development of Coot. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66 (4), 486–501. 10.1107/S0907444910007493. PubMed DOI PMC

Long F.; Nicholls R. A.; Emsley P.; Gražulis S.; Merkys A.; Vaitkus A.; Murshudov G. N. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr, Sect. D: Struct. Biol. 2017, 73 (2), 112–122. 10.1107/S2059798317000067. PubMed DOI PMC

Gore S.; Sanz Garcia E.; Hendrickx P. M. S.; Gutmanas A.; Westbrook J. D.; Yang H.; Feng Z.; Baskaran K.; Berrisford J. M.; Hudson B. P.; et al. Validation of Structures in the Protein Data Bank. Structure 2017, 25 (12), 1916–1927. 10.1016/j.str.2017.10.009. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...