An advanced fast method for the evaluation of multiple immunolabelling using gold nanoparticles based on low-energy STEM
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN0100008
Technologická Agentura České Republiky
TN0100008
Technologická Agentura České Republiky
TN0100008
Technologická Agentura České Republiky
TN0100008
Technologická Agentura České Republiky
TN0100008
Technologická Agentura České Republiky
LM2018129
Czech-BioImaging
LM2018129
Czech-BioImaging
LM2018129
Czech-BioImaging
LM2018129
Czech-BioImaging
LM2018129
Czech-BioImaging
OP VVV CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy
OP VVV CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy
OP VVV CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy
OP VVV CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy
OP VVV CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38698090
PubMed Central
PMC11065996
DOI
10.1038/s41598-024-60314-0
PII: 10.1038/s41598-024-60314-0
Knihovny.cz E-zdroje
- Klíčová slova
- Backscatter electron imaging, High resolution scanning electron microscopy (HRSEM), Immunolabelling, Monte Carlo simulations, Scanning transmission electron microscopy, Simultaneous detection of multiple immunogold markers,
- Publikační typ
- časopisecké články MeSH
We present a powerful method for the simultaneous detection of Au nanoparticles located on both sides of ultrathin sections. The method employs a high-resolution scanning electron microscope (HRSEM) operating in scanning transmission electron microscopy (STEM) mode in combination with the detection of backscattered electrons (BSE). The images are recorded simultaneously during STEM and BSE imaging at the precisely selected accelerating voltage. Under proper imaging conditions, the positions of Au nanoparticles on the top or bottom sides can be clearly differentiated, hence showing this method to be suitable for multiple immunolabelling using Au nanoparticles (NPs) as markers. The difference between the upper and lower Au NPs is so large that it is possible to apply common software tools (such as ImageJ) to enable their automatic differentiation. The effects of the section thickness, detector settings and accelerating voltage on the resulting image are shown. Our experimental results correspond to the results modelled in silico by Monte Carlo (MC) simulations.
Faculty of Science Charles University 128 00 Prague 2 Czech Republic
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Geuze JH, Slot JW, van der Ley PA, Scheffer RC. Use of colloidal gold particles in double-labelling immunoelectron microscopy of ultrathin frozen tissue sections. J. Cell Biol. 1981;89(3):653–665. doi: 10.1083/jcb.89.3.653. PubMed DOI PMC
Robinson JM, Takizawa T, Vandré DD. Enhanced labelling efficiency using ultrasmall immunogold probes: Immunocytochemistry. J. Histochem. Cytochem. 2000;48(4):487–492. doi: 10.1177/002215540004800406. PubMed DOI
Meyer DA, Oliver JA, Albrecht RM. Colloidal palladium particles of different shapes for electron microscopy labelling. Microsc. Microanal. 2010;16(1):33–42. doi: 10.1017/S1431927609991188. PubMed DOI
Philimonenko VV, Philimonenko AA, Šloufová I, Hrubý M, Novotný F, Halbhuber Z, Krivjanská M, Nebesářová J, Šlouf M, Hozák P. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry. Histochem. Cell Biol. 2014;141(3):229–239. doi: 10.1007/s00418-013-1178-6. PubMed DOI PMC
Bleher R, Kandela I, Meyer DA, Albrecht RM. Immuno-EM using colloidal metal nanoparticles and electron spectroscopic imaging for co-localization at high spatial resolution. J. Microsc. 2008;230(3):388–395. doi: 10.1111/j.1365-2818.2008.01997.x. PubMed DOI
Loukanov A, Kamasawa N, Danev R, Shigemoto R, Nagayama K. Immunolocalization of multiple membrane proteins on a carbon replica with STEM and EDX. Ultramicroscopy. 2010;110(4):366–374. doi: 10.1016/j.ultramic.2010.01.016. PubMed DOI
Kandela IK, Albrecht RM. Fluorescence quenching by colloidal heavy metals nanoparticles: Implications for correlative fluorescence and electron microscopy studies. Scanning. 2007;29(4):152–161. doi: 10.1002/sca.20055. PubMed DOI
Nebesarova J, Langhans J, Slouf M, Pavlova E, Vancova M. Is it possible to measure diameters of metal nanoparticles using BSE imaging in FESEM. Micron. 2013;44:159–166. doi: 10.1016/j.micron.2012.06.002. PubMed DOI
Vancová M, Šlouf M, Langhans J, Pavlová E, Nebesářová J. Application of colloidal palladium nanoparticles for labelling in electron microscopy. Microsc. Microanal. 2011;17(5):810–816. doi: 10.1017/S1431927611000547. PubMed DOI
Nebesarova J, Wandrol P, Vancova M. Novel method of simultaneous multiple immunogold localization on resin sections in high resolution scanning electron microscopy. Nanomed. Nanotechnol. Biol. Med. 2016;12(1):105–108. doi: 10.1016/j.nano.2015.09.008. PubMed DOI
Ohring M, Kasprzak L. Reliability and Failure of Electronic Materials and Devices. 2. Academic Press; 2015. Characterization and failure analysis of materials and devices; pp. 611–664.
Nebesářová J, Vancová M. How to observe small biological objects in low voltage electron microscope. Microsc. Microanal. 2007;13(S03):248–249. doi: 10.1017/S143192760708124X. DOI
Egerton RF. Choice of operating voltage for a transmission electron microscope. Ultramicroscopy. 2014;145:85–93. doi: 10.1016/j.ultramic.2013.10.019. PubMed DOI
Drummy LF, Yang J, Martin DC. Low-voltage electron microscopy of polymer and organic molecular thin films. Ultramicroscopy. 2004;99(4):247–256. doi: 10.1016/j.ultramic.2004.01.011. PubMed DOI
Takaoka A, Hasegawa T. Observations of unstained biological specimens using a low-energy, high-resolution STEM. J. Electron. Microsc. 2006;55(3):157–163. doi: 10.1093/jmicro/dfl016. PubMed DOI
Ramachandra R, Demers H, de Jonge N. The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy. Microsc. Microanal. 2013;19:93–101. doi: 10.1017/S143192761201392X. PubMed DOI
Ennos AE. The origin of specimen contamination in the electron microscope. Br. J. Appl. Phys. 1953;4:101–106. doi: 10.1088/0508-3443/4/4/302. DOI
Heide HG. Die Objektverschmutzung im elektronenmikroskop und das problem der strahlenschaedigung durch kohlenstoffabbau. Z. Angew. Phys. 1963;15:116–128.
Mitchell DRG. Contamination mitigation strategies for scanning transmission electron microscopy. Micron. 2015;73:36–46. doi: 10.1016/j.micron.2015.03.013. PubMed DOI
Egerton RF. Control of radiation damage in the TEM. Ultramicroscopy. 2013;127:100–108. doi: 10.1016/j.ultramic.2012.07.006. PubMed DOI
Griffiths AJV, Walther T. Quantification of carbon contamination under electron beam irradiation in a STEM and its suppression by plasma cleaning. J. Phys. Conf. Ser. 2010;241:012017. doi: 10.1088/1742-6596/241/1/012017. DOI
Skoupy R, Nebesarova J, Slouf M, Krzyzanek V. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy. 2019;202:44–50. doi: 10.1016/j.ultramic.2019.03.018. PubMed DOI
Sharaf A, Füssy Z, Tomčala A, Richtová J, Oborník M. Isolation of plastids and mitochondria from Chromera velia. Planta. 2019;250(5):1731–1741. doi: 10.1007/s00425-019-03259-3. PubMed DOI
Drouin D, Couture ARE, Joly D, Tastet X, Aimez V, Gauvin R. CASINO V2.42-A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning. 2007;29:92–101. doi: 10.1002/sca.20000. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Sahoo P, Wilkins C, Yeager J. Threshold selection using Renyi's entropy. Pattern Recognit. 1997;30:71–84. doi: 10.1016/S0031-3203(96)00065-9. DOI
Skoupý R, Fort T, Krzyzanek V. Nanoscale estimation of coating thickness on substrates via standardless BSE detector calibration. Nanomaterials. 2020;10(2):332. doi: 10.3390/nano10020332. PubMed DOI PMC