Simultaneous detection of multiple targets for ultrastructural immunocytochemistry

. 2014 Mar ; 141 (3) : 229-39. [epub] 20140122

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24449180

Simultaneous detection of biological molecules by means of indirect immunolabeling provides valuable information about their localization in cellular compartments and their possible interactions in macromolecular complexes. While fluorescent microscopy allows for simultaneous detection of multiple antigens, the sensitive electron microscopy immunodetection is limited to only two antigens. In order to overcome this limitation, we prepared a set of novel, shape-coded metal nanoparticles readily discernible in transmission electron microscopy which can be conjugated to antibodies or other bioreactive molecules. With the use of novel nanoparticles, various combinations with commercial gold nanoparticles can be made to obtain a set for simultaneous labeling. For the first time in ultrastructural histochemistry, up to five molecular targets can be identified simultaneously. We demonstrate the usefulness of the method by mapping of the localization of nuclear lipid phosphatidylinositol-4,5-bisphosphate together with four other molecules crucial for genome function, which proves its suitability for a wide range of biomedical applications.

Erratum v

Histochem Cell Biol. 2014 Mar;141(3):241 PubMed

Zobrazit více v PubMed

Barlow CA, Laishram RS, Anderson RA. Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol. 2010;20(1):25–35. doi: 10.1016/j.tcb.2009.09.009. PubMed DOI PMC

Biggiogera M, Fakan S, Kaufmann SH, Black A, Shaper JH, Busch H. Simultaneous immunoelectron microscopic visualization of protein B23 and C23 distribution in the HeLa cell nucleolus. J Histochem Cytochem. 1989;37(9):1371–1374. doi: 10.1177/37.9.2768807. PubMed DOI

Castano E, Philimonenko VV, Kahle M, Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H, Hozák P. Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol. 2010;133(6):607–626. doi: 10.1007/s00418-010-0701-2. PubMed DOI

Dingova H, Fukalova J, Maninova M, Philimonenko VV, Hozak P. Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem Cell Biol. 2009;131(3):425–434. doi: 10.1007/s00418-008-0539-z. PubMed DOI

Eliceiri GL, Ryerse JS. Detection of intranuclear clusters of Sm antigens with monoclonal anti-Sm antibodies by immunoelectron microscopy. J Cell Physiol. 1984;121(2):449–451. doi: 10.1002/jcp.1041210226. PubMed DOI

Hozak P, Jackson DA, Cook PR. Replication factories and nuclear bodies: the ultrastructural characterization of replication sites during the cell cycle. J Cell Sci. 1994;107(Pt 8):2191–2202. PubMed

Kandela IK, Bleher R, Albrecht RM. Multiple correlative immunolabeling for light and electron microscopy using fluorophores and colloidal metal particles. J Histochem Cytochem. 2007;55(10):983–990. doi: 10.1369/jhc.6A7124.2007. PubMed DOI

Kyselá K, Philimonenko AA, Philimonenko VV, Janácek J, Kahle M, Hozák P. Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem Cell Biol. 2005;124(5):347–358. doi: 10.1007/s00418-005-0042-8. PubMed DOI

Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater. 2009;19:189–200. doi: 10.1002/adfm.200801439. DOI

Loukanov A, Kamasawa N, Danev R, Shigemoto R, Nagayama K. Immunolocalization of multiple membrane proteins on a carbon replica with STEM and EDX. Ultramicroscopy. 2010;110(4):366–374. doi: 10.1016/j.ultramic.2010.01.016. PubMed DOI

Mayhew TM, Lucocq JM. Multiple-labeling immuno EM using different sizes of colloidal gold: alternative approaches to test for differential distribution and colocalization in subcellular structures. Histochem Cell Biol. 2011;135:317–326. doi: 10.1007/s00418-011-0788-0. PubMed DOI

Meyer DA, Oliver JA, Albrecht RM. A method for quadruple labeling of platelet surface epitopes for transmission electron microscopy. Microsc Microanal. 2005;11:142–143. doi: 10.1017/S1431927605502241. DOI

Meyer DA, Oliver JA, Albrecht RM. Colloidal palladium particles of different shapes for electron microscopy labeling. Microsc Microanal. 2010;16(1):33–42. doi: 10.1017/S1431927609991188. PubMed DOI

Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi:10.1021/cm020732l

Philimonenko AA, Janacek J, Hozak P. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J Struct Biol. 2000;132(3):201–210. doi: 10.1006/jsbi.2000.4326. PubMed DOI

Philimonenko VV, Zhao J, Iben S, Dingová H, Kyselá K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozák P, Grummt I. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol. 2004;6(12):1165–1172. doi: 10.1038/ncb1190. PubMed DOI

Roth J. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem Cell Biol. 1996;106(1):1–8. doi: 10.1007/BF02473197. PubMed DOI

Roth J, Zuber C, Komminoth P, Sata T, Li WP, Heitz PU. Applications of immunogold and lectin-gold labeling in tumor research and diagnosis. Histochem Cell Biol. 1996;106(1):131–148. doi: 10.1007/BF02473207. PubMed DOI

Saitoh N, Goldberg IG, Wood ER, Earnshaw WC. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol. 1994;127(2):303–318. doi: 10.1083/jcb.127.2.303. PubMed DOI PMC

Schofer C, Janacek J, Weipoltshammer K, Pourani J, Hozak P. Mapping of cellular compartments based on ultrastructural immunogold labeling. J Struct Biol. 2004;147(2):128–135. doi: 10.1016/j.jsb.2004.01.014. PubMed DOI

Slouf M, Pavlova E, Bhardwaj MS, Plestil J, Onderkova H, Philimonenko AA, Hozak P. Preparation of stable Pd nanoparticles with tunable size for multiple immunolabeling in biomedicine. Mater Lett. 2011;65:1197–1200. doi: 10.1016/j.matlet.2011.01.046. DOI

Slouf M, Hruby M, Bakaeva Z, Vlkova H, Nebesarova J, Philimonenko AA, Hozak P. Preparation of stable Pd nanocubes and their use in biological labeling. Colloids Surf B Biointerfaces. 2012;100:205–208. doi: 10.1016/j.colsurfb.2012.05.023. PubMed DOI

Sobol M, Yildirim S, Philimonenko VV, Marášek P, Castaño E, Hozák P (2013) UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 4(6). doi:10.4161/nucl.27154 PubMed PMC

Srnová-Šloufová I, Lednicky F, Gemperle A, Gemperlová J. Core-shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir. 2000;16:9928–9935. doi: 10.1021/la0009588. DOI

Vancova M, Slouf M, Langhans J, Pavlova E, Nebesarova J. Application of colloidal palladium nanoparticles for labeling in electron microscopy. Microsc Microanal. 2011;17(5):810–816. doi: 10.1017/S1431927611000547. PubMed DOI

Vlckova B, Matejka P, Simonova J, Cermakova K, Pancoska P, Baumruk V (1993) Surface enhanced (Resonance) Raman spectra of free base 5, 10, 15, 20 tetrakis (4 carboxyphenyl) porphyrin and its silver complex in systems with silver colloid: direct adsorption versus adsorption via molecular spacer. J Phys Chem 97:9719–9729

Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T, Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci. 2013;126(12):2730–2739. doi: 10.1242/jcs.123661. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace