Colocalization coefficients evaluating the distribution of molecular targets in microscopy methods based on pointed patterns
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
27460592
PubMed Central
PMC5037163
DOI
10.1007/s00418-016-1467-y
PII: 10.1007/s00418-016-1467-y
Knihovny.cz E-resources
- Keywords
- Colocalization, Immunohistochemistry, Manders’ coefficients, Pointed patterns, Quantitative analysis, Transmission electron microscopy,
- MeSH
- Algorithms * MeSH
- Microscopy, Fluorescence MeSH
- Microscopy, Immunoelectron MeSH
- Microscopy, Confocal MeSH
- Image Processing, Computer-Assisted * MeSH
- Publication type
- Journal Article MeSH
In biomedical studies, the colocalization is commonly understood as the overlap between distinctive labelings in images. This term is usually associated especially with quantitative evaluation of the immunostaining in fluorescence microscopy. On the other hand, the evaluation of the immunolabeling colocalization in the electron microscopy images is still under-investigated and biased by the subjective and non-quantitative interpretation of the image data. We introduce a novel computational technique for quantifying the level of colocalization in pointed patterns. Our approach follows the idea included in the widely used Manders' colocalization coefficients in fluorescence microscopy and represents its counterpart for electron microscopy. In presented methodology, colocalization is understood as the product of the spatial interactions at the single-particle (single-molecule) level. Our approach extends the current significance testing in the immunoelectron microscopy images and establishes the descriptive colocalization coefficients. To demonstrate the performance of the proposed coefficients, we investigated the level of spatial interactions of phosphatidylinositol 4,5-bisphosphate with fibrillarin in nucleoli. We compared the electron microscopy colocalization coefficients with Manders' colocalization coefficients for confocal microscopy and super-resolution structured illumination microscopy. The similar tendency of the values obtained using different colocalization approaches suggests the biological validity of the scientific conclusions. The presented methodology represents a good basis for further development of the quantitative analysis of immunoelectron microscopy data and can be used for studying molecular interactions at the ultrastructural level. Moreover, this methodology can be applied also to the other super-resolution microscopy techniques focused on characterization of discrete pointed structures.
See more in PubMed
Anderson JB, Carol AA, Brown VK, Anderson LE. A quantitative method for assessing co-localization in immunolabeled thin section electron micrographs. J Struct Biol. 2003;143:95–106. doi: 10.1016/S1047-8477(03)00138-2. PubMed DOI
Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8:574–585. doi: 10.1038/nrm2184. PubMed DOI
Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc Oxf. 2006;224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x. PubMed DOI
Caplan J, Niethammer M, Taylor RM, Czymmek KJ. The power of correlative microscopy: multi-modal, multi-scale, multi-dimensional. Curr Opin Struct Biol. 2011;21:686–693. doi: 10.1016/j.sbi.2011.06.010. PubMed DOI PMC
Comeau JW, Costantino S, Wiseman PW. A guide to accurate fluorescence microscopy colocalization measurements. Biophys J. 2006;91:4611–4622. doi: 10.1529/biophysj.106.089441. PubMed DOI PMC
Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86:3993–4003. doi: 10.1529/biophysj.103.038422. PubMed DOI PMC
D’Amico F, Skarmoutsou E. Clustering and colocalization in transmission immunoelectron microscopy: a brief review. Micron. 2008;39:1–6. doi: 10.1016/j.micron.2007.09.005. PubMed DOI
D’Amico F, Skarmoutsou E. Quantifying immunogold labelling in transmission electron microscopy. J Microsc Oxf. 2008;230:9–15. doi: 10.1111/j.1365-2818.2008.01949.x. PubMed DOI
Diggle PJ. Statistical analysis of spatial point patterns. London, New York: Academic Press; 1983.
Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011;300:C723–C742. doi: 10.1152/ajpcell.00462.2010. PubMed DOI PMC
Fatica A, Galardi S, Altieri F, Bozzoni I. Fibrillarin binds directly and specifically to U16 box C/D snoRNA. RNA (New York, NY) 2000;6:88–95. doi: 10.1017/S1355838200991623. PubMed DOI PMC
Fernández-Suárez M, Ting AY. Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol. 2008;9:929–943. doi: 10.1038/nrm2531. PubMed DOI
Glasbey C, Roberts I. Statistical analysis of the distribution of gold particles over antigen sites after immunogold labelling. J Microsc. 1997;186:258–262. doi: 10.1046/j.1365-2818.1997.2050767.x. DOI
Hernandez-Verdun D. Nucleolus: from structure to dynamics. Histochem Cell Biol. 2006;125:127–137. doi: 10.1007/s00418-005-0046-4. PubMed DOI
Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus(Austin, TX) 2011;2:189–194. PubMed PMC
Hopwood D. The reactions of glutaraldehyde with nucleic acids. Histochem J. 1975;7:267–276. doi: 10.1007/BF01003595. PubMed DOI
Hoskins JG, Fameli N, van Breemen C (2013) Gold particle quantification in immuno-gold labelled sections for transmission electron microscopy. arXiv:1302.6988
Hozák P, Cook PR, Schofer C, Mosgoller W, Wachtler F. Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci. 1994;107:639–648. PubMed
Jaskolski F, Mulle C, Manzoni OJ. An automated method to quantify and visualize colocalized fluorescent signals. J Neurosci Methods. 2005;146:42–49. doi: 10.1016/j.jneumeth.2005.01.012. PubMed DOI
Kiernan JA. Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today. 2000;1:8–12.
Lachmanovich E, Shvartsman D, Malka Y, Botvin C, Henis Y, Weiss A. Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J Microsc. 2003;212:122–131. doi: 10.1046/j.1365-2818.2003.01239.x. PubMed DOI
Manders EMM, Verbeek FJ, Aten JA. Measurement of colocalization of objects in dual-color confocal images. J Microsc Oxf. 1993;169:375–382. doi: 10.1111/j.1365-2818.1993.tb03313.x. PubMed DOI
Mayhew TM. Mapping the distributions and quantifying the labelling intensities of cell compartments by immunoelectron microscopy: progress towards a coherent set of methods. J Anat. 2011;219:647–660. doi: 10.1111/j.1469-7580.2011.01438.x. PubMed DOI PMC
Mayhew TM. Quantifying immunogold localization on electron microscopic thin sections: a compendium of new approaches for plant cell biologists. J Exp Bot. 2011;62:4101–4113. doi: 10.1093/jxb/err176. PubMed DOI
Mayhew TM. Quantitative immunocytochemistry at the ultrastructural level: a stereology-based approach to molecular nanomorphomics. Cell Tissue Res. 2015;360:43–59. doi: 10.1007/s00441-014-2038-y. PubMed DOI
Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37(790–796):798–802. PubMed
Ochs RL, Lischwe MA, Spohn WH, Busch H. Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell Under Auspices Eur Cell Biol Org. 1985;54:123–133. PubMed
Osborne SL, Thomas CL, Gschmeissner S, Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci. 2001;114:2501–2511. PubMed
Philimonenko AA, Janacek J, Hozak P. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J Struct Biol. 2000;132:201–210. doi: 10.1006/jsbi.2000.4326. PubMed DOI
Philimonenko V, Philimonenko A, Šloufová I, Hrubý M, Novotný F, Halbhuber Z, Krivjanská M, Nebesářová J, Šlouf M, Hozák P. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry. Histochem Cell Biol. 2014;141:229–239. doi: 10.1007/s00418-013-1178-6. PubMed DOI PMC
Plitzko JM, Rigort A, Leis A. Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. Curr Opin Biotechnol. 2009;20:83–89. doi: 10.1016/j.copbio.2009.03.008. PubMed DOI
Pompey SN, Michaely P, Luby-Phelps K. Quantitative fluorescence co-localization to study protein–receptor complexes. Protein Ligand Interact Methods Appl. 2013;1008:439–453. doi: 10.1007/978-1-62703-398-5_16. PubMed DOI
Rakitina DV, Taliansky M, Brown JW, Kalinina NO. Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res. 2011;39:8869–8880. doi: 10.1093/nar/gkr594. PubMed DOI PMC
Ramirez O, Garcia A, Rojas R, Couve A, Hartel S. Confined displacement algorithm determines true and random colocalization in fluorescence microscopy. J Microsc. 2010;239:173–183. doi: 10.1111/j.1365-2818.2010.03369.x. PubMed DOI
Ripley BD. Modeling spatial patterns. J R Stat Soc B Met. 1977;39:172–212.
Ripley BD. Statistical inference for spatial processes. Cambridge: Cambridge University Press; 1991.
Ripley BD. Spatial statistics. New York: Wiley; 2005.
Roth J. Postembedding labeling on Lowicryl K4M tissue sections: detection and modification of cellular components. Methods Cell Biol. 1989;31:513–551. doi: 10.1016/S0091-679X(08)61625-8. PubMed DOI
Roth J, Taatjes DJ. Tubules of the trans Golgi apparatus visualized by immunoelectron microscopy. Histochem Cell Biol. 1998;109:545–553. doi: 10.1007/s004180050254. PubMed DOI
Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981;29:663–671. doi: 10.1177/29.5.6166664. PubMed DOI
Russell AD, Hopwood D. The biological uses and importance of glutaraldehyde. Prog Med Chem. 1976;13:271–301. doi: 10.1016/S0079-6468(08)70140-1. PubMed DOI
Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol. 2007;160:135–145. doi: 10.1016/j.jsb.2007.07.011. PubMed DOI
Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy. J Cell Biol. 2010;190:165–175. doi: 10.1083/jcb.201002018. PubMed DOI PMC
Schöfer C, Janáček J, Weipoltshammer K, Pourani J, Hozák P. Mapping of cellular compartments based on ultrastructural immunogold labeling. J Struct Biol. 2004;147:128–135. doi: 10.1016/j.jsb.2004.01.014. PubMed DOI
Scriven DRL, Lynch RM, Moore EDW. Image acquisition for colocalization using optical microscopy. Am J Physiol Cell Physiol. 2008;294:C1119–C1122. doi: 10.1152/ajpcell.00133.2008. PubMed DOI
Sewell BT, Bouloukos C, Holt C. Formaldehyde and glutaraldehyde in the fixation of chromatin for electron microscopy. J Microsc. 1984;136:103–112. doi: 10.1111/j.1365-2818.1984.tb02550.x. PubMed DOI
Sobol M, Philimonenko VV, Hozák P. Comparison of methods of high-pressure freezing and automated freeze-substitution of suspension cells combined with LR White embedding. Histochem Cell Biol. 2010;134:631–641. doi: 10.1007/s00418-010-0757-z. PubMed DOI
Sobol M, Nebesarova J, Hozak P. A method for preserving ultrastructural properties of mitotic cells for subsequent immunogold labeling using low-temperature embedding in LR White resin. Histochem Cell Biol. 2011;135:103–110. doi: 10.1007/s00418-010-0771-1. PubMed DOI
Sobol MA, Philimonenko VV, Philimonenko AA, Hozák P. Quantitative evaluation of freeze-substitution effects on preservation of nuclear antigens during preparation of biological samples for immunoelectron microscopy. Histochem Cell Biol. 2012;138:167–177. doi: 10.1007/s00418-012-0931-6. PubMed DOI
Sobol M, Yildirim S, Philimonenko VV, Marasek P, Castano E, Hozak P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus (Austin, TX) 2013;4:478–486. PubMed PMC
Stoyan D. Stereology and stochastic geometry. Int Stat Rev. 1990;58:227–242. doi: 10.2307/1403806. DOI
Stoyan D, Kendall WS, Mecke J, Ruschendorf L. Stochastic geometry and its applications. New York: Wiley; 1987.
Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T, Hozak P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Zinchuk V, Zinchuk O, Okada T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem. 2007;40:101–111. doi: 10.1267/ahc.07002. PubMed DOI PMC