Differential effect of monoterpenes and flavonoids on the transcription of aromatic ring-hydroxylating dioxygenase genes in Rhodococcus opacus C1 and Rhodococcus sp. WAY2
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
40042991
PubMed Central
PMC11881993
DOI
10.1099/mgen.0.001359
Knihovny.cz E-zdroje
- Klíčová slova
- Rhodococcus, aromatic pollutants, aromatic ring-hydroxylating dioxygenases, biodegradation, flavonoids, monoterpenes,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biodegradace MeSH
- dioxygenasy * genetika metabolismus MeSH
- flavonoidy * farmakologie metabolismus MeSH
- fylogeneze MeSH
- genetická transkripce účinky léků MeSH
- monoterpeny * farmakologie metabolismus MeSH
- regulace genové exprese u bakterií účinky léků MeSH
- Rhodococcus * genetika účinky léků enzymologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- dioxygenasy * MeSH
- flavonoidy * MeSH
- monoterpeny * MeSH
Aromatic ring-hydroxylating dioxygenases (ARHDs) play a crucial role in the aerobic biodegradation of both natural and anthropogenic aromatic compounds. Although their ability to process contaminants is not entirely understood, it is thought to have evolved from the transformation of structurally similar secondary plant metabolites (SPMs). Hence, to investigate this connection, we tested a variety of SPMs from the monoterpene and flavonoid classes as carbon sources and transcriptional effectors of several phylogenetically distant ARHD genes involved in the degradation of aromatic pollutants. Specifically, we focused on bphA1, nahA1 and phtA1 in Rhodococcus opacus C1, whose genomic analysis is also presented hereinafter, and bphA1a, nahA1-bphA1b and etbA1ab in Rhodococcus sp. WAY2. Whilst induction was only observed with (R)-carvone for bphA1a and nahA1-bphA1b of strain WAY2, and with p-cymene for nahA1 and nahA1-bphA1b of strains C1 and WAY2, respectively, an extensive inhibition by flavonoids was observed for most of the genes in both strains. To the best of our knowledge, our study is the first to report the effect of flavonoids and monoterpenes on the transcription of nahA1, etbA1 and phtA1 genes. In addition, we show that, in contrast to pseudomonads, many flavonoids inhibit the transcription of the ARHD genes in rhodococci. Thus, our work provides a new perspective on flavonoids as the transcriptional effectors of ARHDs, highlighting the significant variability of these enzymes and the divergent responses that they elicit. Moreover, our results contribute to understanding the complex interactions between microorganisms and SPMs and provide insights into the molecular basis of a number of them.
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic v v i Prague Czech Republic
Military Health Institute Ministry of Defence of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol. 2011;9:803–816. doi: 10.1038/nrmicro2652. PubMed DOI
Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, et al. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J. 2010;4:279–285. doi: 10.1038/ismej.2009.104. PubMed DOI PMC
Penning CH. Physical characteristics and commercial possibilities of chlorinated diphenyl. Ind Eng Chem. 1930;22:1180–1182. doi: 10.1021/ie50251a020. DOI
Donnelly PK, Hegde RS, Fletcher JS. Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere. 1994;28:981–988. doi: 10.1016/0045-6535(94)90014-0. DOI
Focht DD. Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls. Curr Opin Biotechnol. 1995;6:341–346. doi: 10.1016/0958-1669(95)80057-3. DOI
van der Geize R, Dijkhuizen L. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol. 2004;7:255–261. doi: 10.1016/j.mib.2004.04.001. PubMed DOI
Chakraborty J, Ghosal D, Dutta A, Dutta TK. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. J Biomol Struct Dyn. 2012;30:419–436. doi: 10.1080/07391102.2012.682208. PubMed DOI
Singer AC, Crowley DE, Thompson IP. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 2003;21:123–130. doi: 10.1016/S0167-7799(02)00041-0. PubMed DOI
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159. PubMed DOI
Uhlik O, Musilova L, Ridl J, Hroudova M, Vlcek C, et al. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl Microbiol Biotechnol. 2013;97:9245–9256. doi: 10.1007/s00253-012-4627-6. PubMed DOI
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci. 2016;17:1205. doi: 10.3390/ijms17081205. PubMed DOI PMC
Pillai BVS, Swarup S. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol. 2002;68:143–151. doi: 10.1128/AEM.68.1.143-151.2002. PubMed DOI PMC
Shaw LJ, Morris P, Hooker JE. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol. 2006;8:1867–1880. doi: 10.1111/j.1462-2920.2006.01141.x. PubMed DOI
Suman J, Strejcek M, Zubrova A, Capek J, Wald J, et al. Predominant biphenyl dioxygenase from legacy polychlorinated biphenyl (PCB)-contaminated soil is a part of unusual gene cluster and transforms flavone and flavanone. Front Microbiol. 2021;12:644708. doi: 10.3389/fmicb.2021.644708. PubMed DOI PMC
Pham TTM, Pino Rodriguez NJ, Hijri M, Sylvestre M. Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS One. 2015;10:e0126033. doi: 10.1371/journal.pone.0126033. PubMed DOI PMC
Toussaint J-P, Pham TTM, Barriault D, Sylvestre M. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol. 2012;95:1589–1603. doi: 10.1007/s00253-011-3824-z. PubMed DOI
Rudra B, Gupta RS. Phylogenomics studies and molecular markers reliably demarcate genus Pseudomonas sensu stricto and twelve other Pseudomonadaceae species clades representing novel and emended genera. Front Microbiol. 2023;14:1273665. doi: 10.3389/fmicb.2023.1273665. PubMed DOI PMC
Zubrova A, Michalikova K, Semerad J, Strejcek M, Cajthaml T, et al. Biphenyl 2,3-dioxygenase in Pseudomonas alcaliphila JAB1 Is both induced by phenolics and monoterpenes and involved in their transformation. Front Microbiol. 2021;12:657311. doi: 10.3389/fmicb.2021.657311. PubMed DOI PMC
Warren R, Hsiao WWL, Kudo H, Myhre M, Dosanjh M, et al. Functional characterization of a catabolic plasmid from polychlorinated- biphenyl-degrading Rhodococcus sp. strain RHA1. J Bacteriol. 2004;186:7783–7795. doi: 10.1128/JB.186.22.7783-7795.2004. PubMed DOI PMC
McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA. 2006;103:15582–15587. doi: 10.1073/pnas.0607048103. PubMed DOI PMC
Garrido-Sanz D, Sansegundo-Lobato P, Redondo-Nieto M, Suman J, Cajthaml T, et al. Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microb Genom. 2020;6:e000363. doi: 10.1099/mgen.0.000363. PubMed DOI PMC
Liang Y, Yu H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv. 2021;49:107748. doi: 10.1016/j.biotechadv.2021.107748. PubMed DOI
Goodfellow M, Jones AL, Maldonado LA, Salanitro J. Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol. 2004;27:61–65. doi: 10.1078/0723-2020-00254. PubMed DOI
Zhang J, Zhang Y, Xiao C, Liu Z, Goodfellow M. Rhodococcus maanshanensis sp. nov., a novel actinomycete from soil. Int J Syst Evol Microbiol. 2002;52:2121–2126. doi: 10.1099/00207713-52-6-2121. PubMed DOI
Dhaouadi S, Hamdane AM, Rhouma A. Isolation and characterization of Rhodococcus spp. from pistachio and almond rootstocks and trees in Tunisia. Agronomy. 2021;11:355. doi: 10.3390/agronomy11020355. DOI
Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact . 2004;17:6–15. doi: 10.1094/MPMI.2004.17.1.6. PubMed DOI
Vergani L, Mapelli F, Suman J, Cajthaml T, Uhlik O, et al. Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS One. 2019;14:e0221253. doi: 10.1371/journal.pone.0221253. PubMed DOI PMC
Leigh MB, Fletcher JS, Fu X, Schmitz FJ. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol. 2002;36:1579–1583. PubMed
Garrido-Sanz D, Manzano J, Martin M, Redondo-Nieto M, Rivilla R. Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Front Microbiol. 2018;9:232. PubMed PMC
Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, et al. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol. 2009;75:6471–6477. doi: 10.1128/AEM.00466-09. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Suman J, Strejcek M, Zubrova A, Capek J, Wald J, et al. Predominant biphenyl dioxygenase from legacy polychlorinated biphenyl (PCB)-contaminated soil is a part of unusual gene cluster and transforms flavone and flavanone. Front Microbiol. 2021;12 doi: 10.3389/fmicb.2021.644708. PubMed DOI PMC
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform . 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Gilchrist CLM, Chooi Y-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics. 2021;37:2473–2475. doi: 10.1093/bioinformatics/btab007. PubMed DOI
Zubrova A, Michalikova K, Semerad J, Strejcek M, Cajthaml T, et al. Biphenyl 2,3-dioxygenase in Pseudomonas alcaliphila JAB1 is both induced by phenolics and monoterpenes and involved in their transformation. Front Microbiol. 2021;12 doi: 10.3389/fmicb.2021.657311. PubMed DOI PMC
Ganger MT, Dietz GD, Ewing SJ. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinformatics. 2017;18:534. doi: 10.1186/s12859-017-1949-5. PubMed DOI PMC
Stecker C, Johann A, Herzberg C, Averhoff B, Gottschalk G. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol. 2003;185:5269–5274. doi: 10.1128/JB.185.17.5269-5274.2003. PubMed DOI PMC
Iwasaki T, Miyauchi K, Masai E, Fukuda M. Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 2006;72:5396–5402. doi: 10.1128/AEM.00298-06. PubMed DOI PMC
Choi KY, Kim D, Sul WJ, Chae J-C, Zylstra GJ, et al. Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol Lett. 2005;252:207–213. doi: 10.1016/j.femsle.2005.08.045. PubMed DOI
Stingley RL, Brezna B, Khan AA, Cerniglia CE. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology. 2004;150:3749–3761. doi: 10.1099/mic.0.27263-0. PubMed DOI
Yang X, Liu X, Song L, Xie F, Zhang G, et al. Characterization and functional analysis of a novel gene cluster involved in biphenyl degradation in Rhodococcus sp. strain R04. J Appl Microbiol. 2007;103:2214–2224. doi: 10.1111/j.1365-2672.2007.03461.x. PubMed DOI
Kim D, Chae J-C, Zylstra GJ, Kim Y-S, Kim S-K, et al. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl Environ Microbiol. 2004;70:7086–7092. doi: 10.1128/AEM.70.12.7086-7092.2004. PubMed DOI PMC
Kimura N, Kato H, Nishi A, Furukawa K. Analysis of substrate range of biphenyl-catabolic enzymes. Biosci Biotechnol Biochem. 1996;60:220–223. doi: 10.1271/bbb.60.220. PubMed DOI
Martin VJ, Mohn WW. A novel aromatic-ring-hydroxylating dioxygenase from the diterpenoid-degrading bacterium Pseudomonas abietaniphila BKME-9. J Bacteriol. 1999;181:2675–2682. doi: 10.1128/JB.181.9.2675-2682.1999. PubMed DOI PMC
Baldwin BR, Mesarch MB, Nies L. Broad substrate specificity of naphthalene- and biphenyl-utilizing bacteria. Appl Microbiol Biotechnol. 2000;53:748–753. doi: 10.1007/s002539900300. PubMed DOI
Seo J, Kang SI, Kim M, Han J, Hur HG. Flavonoids biotransformation by bacterial non-heme dioxygenases, biphenyl and naphthalene dioxygenase. Appl Microbiol Biotechnol. 2011;91:219–228. doi: 10.1007/s00253-011-3334-z. PubMed DOI
Chung S-Y, Maeda M, Song E, Horikoshij K, Kudo T. A gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci Biotechnol Biochem. 1994;58:2111–2113. doi: 10.1271/bbb.58.2111. DOI
Hernandez BS, Koh S-C, Chial M, Focht DD. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation. 1997;8:153–158. doi: 10.1023/A:1008255218432. DOI
Pham TTM, Sylvestre M. Has the bacterial biphenyl catabolic pathway evolved primarily to degrade biphenyl? The diphenylmethane case. J Bacteriol. 2013;195:3563–3574. doi: 10.1128/JB.00161-13. PubMed DOI PMC
van der Werf MJ, Swarts HJ, de Bont JA. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol. 1999;65:2092–2102. doi: 10.1128/AEM.65.5.2092-2102.1999. PubMed DOI PMC
van der Werf MJ, Boot AM. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology. 2000;146:1129–1141. doi: 10.1099/00221287-146-5-1129. PubMed DOI
Duetz WA, Fjällman AH, Ren S, Jourdat C, Witholt B. Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl Environ Microbiol. 2001;67:2829–2832. doi: 10.1128/AEM.67.6.2829-2832.2001. PubMed DOI PMC
Park K-Y, Kim D, Koh S-C, So J-S, Kim J-S, et al. Molecular cloning and identification of a novel oxygenase gene specifically induced during the growth of rhodococcus sp. strain T104 on limonene. J Microbiol. 2004;42:160–162. PubMed
Colbert CL, Agar NYR, Kumar P, Chakko MN, Sinha SC, et al. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes. PLoS One. 2013;8:e52550. doi: 10.1371/journal.pone.0052550. PubMed DOI PMC
Bopp LH. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Indust Microbiol. 1986;1:23–29. doi: 10.1007/BF01569413. DOI
Gibson DT, Cruden DL, Haddock JD, Zylstra GJ, Brand JM. Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. J Bacteriol. 1993;175:4561–4564. doi: 10.1128/jb.175.14.4561-4564.1993. PubMed DOI PMC
Ohtsubo Y, Nagata Y, Kimbara K, Takagi M, Ohta A. Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. Gene. 2000;256:223–228. doi: 10.1016/s0378-1119(00)00349-8. PubMed DOI
Kesseler M, Dabbs ER, Averhoff B, Gottschalk G. Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology. 1996;142:3241–3251. doi: 10.1099/13500872-142-11-3241. PubMed DOI
Gonçalves ER, Hara H, Miyazawa D, Davies JE, Eltis LD, et al. Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 2006;72:6183–6193. doi: 10.1128/AEM.00947-06. PubMed DOI PMC
Pham TTM, Tu Y, Sylvestre M. Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl Environ Microbiol. 2012;78:3560–3570. doi: 10.1128/AEM.00225-12. PubMed DOI PMC
Ghitti E, Rolli E, Vergani L, Borin S. Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. Front Plant Sci. 2024;15 doi: 10.3389/fpls.2024.1325048. PubMed DOI PMC
Araki N, Niikura Y, Miyauchi K, Kasai D, Masai E, et al. Glucose-mediated transcriptional repression of PCB/biphenyl catabolic genes in Rhodococcus jostii RHA1. J Mol Microbiol Biotechnol. 2011;20:53–62. doi: 10.1159/000323509. PubMed DOI
Fujihara H, Hirose J, Suenaga H. Evolution of genetic architecture and gene regulation in biphenyl/PCB-degrading bacteria. Front Microbiol. 2023;14 doi: 10.3389/fmicb.2023.1168246. PubMed DOI PMC
Takeda H, Shimodaira J, Yukawa K, Hara N, Kasai D, et al. Dual two-component regulatory systems are involved in aromatic compound degradation in a polychlorinated-biphenyl degrader, Rhodococcus jostii RHA1. J Bacteriol. 2010;192:4741–4751. doi: 10.1128/JB.00429-10. PubMed DOI PMC
Shimodaira J, Furusawa Y, Miyazawa Y, Kasai D, Miyauchi K, et al. The 24-bp consensus sequence responsible for regulation of the BphS1T1 two-component system in a hybrid promoter. J Biosci Bioeng. 2012;113:279–285. doi: 10.1016/j.jbiosc.2011.10.021. PubMed DOI
Takeda H, Yamada A, Miyauchi K, Masai E, Fukuda M. Characterization of transcriptional regulatory genes for biphenyl degradation in Rhodococcus sp. strain RHA1. J Bacteriol. 2004;186:2134–2146. doi: 10.1128/JB.186.7.2134-2146.2004. PubMed DOI PMC
Laub MT, Goulian M. Specificity in two-component signal transduction pathways. Annu Rev Genet. 2007;41:121–145. doi: 10.1146/annurev.genet.41.042007.170548. PubMed DOI
Taguchi K, Motoyama M, Iida T, Kudo T. Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of Rhodococci. Biosci Biotechnol Biochem. 2007;71:1136–1144. doi: 10.1271/bbb.60551. PubMed DOI
Yang X, Sun Y, Qian S. Biodegradation of seven polychlorinated biphenyls by a newly isolated aerobic bacterium (Rhodococcus sp. R04) J Ind Microbiol Biotechnol . 2004;31:415–420. doi: 10.1007/s10295-004-0162-5. PubMed DOI
Gilbert ES, Crowley DE. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol. 1997;63:1933–1938. doi: 10.1128/aem.63.5.1933-1938.1997. PubMed DOI PMC
Y-i P, So J, Koh S-C. Induction by carvone of the polychlorinated biphenyl (PCB)-degradative pathway in alcaligenes eutrophus H850 and its molecular monitoring. J Microbiol Biotechnol. 1999;9:804–810.
Singer AC, Gilbert ES, Luepromchai E, Crowley DE. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol. 2000;54:838–843. doi: 10.1007/s002530000472. PubMed DOI
Robrock KR, Mohn WW, Eltis LD, Alvarez-Cohen L. Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs. Biotechnol Bioeng. 2011;108:313–321. doi: 10.1002/bit.22952. PubMed DOI
Yamada A, Kishi H, Sugiyama K, Hatta T, Nakamura K, et al. Two nearly identical aromatic compound hydrolase genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 1998;64:2006–2012. doi: 10.1128/AEM.64.6.2006-2012.1998. PubMed DOI PMC
Patel TR, Barnsley EA. Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J Bacteriol. 1980;143:668–673. doi: 10.1128/jb.143.2.668-673.1980. PubMed DOI PMC
Barriault D, Sylvestre M. Functionality of biphenyl 2,3-dioxygenase components in naphthalene 1,2-dioxygenase. Appl Microbiol Biotechnol. 1999;51:592–597. doi: 10.1007/s002530051437. PubMed DOI
Kimura N, Kitagawa W, Mori T, Nakashima N, Tamura T, et al. Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101. Appl Microbiol Biotechnol. 2006;73:474–484. doi: 10.1007/s00253-006-0481-8. PubMed DOI
Seo J, Kang S-I, Ryu J-Y, Lee Y-J, Park KD, et al. Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Microbiol Biotechnol. 2010;86:1451–1462. doi: 10.1007/s00253-009-2389-6. PubMed DOI
Yen KM, Gunsalus IC. Regulation of naphthalene catabolic genes of plasmid NAH7. J Bacteriol. 1985;162:1008–1013. doi: 10.1128/jb.162.3.1008-1013.1985. PubMed DOI PMC
Jones RM, Britt-Compton B, Williams PA. The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J Bacteriol. 2003;185:5847–5853. doi: 10.1128/JB.185.19.5847-5853.2003. PubMed DOI PMC
Kulakov LA, Chen S, Allen CCR, Larkin MJ. Web-type evolution of rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol. 2005;71:1754–1764. doi: 10.1128/AEM.71.4.1754-1764.2005. PubMed DOI PMC
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7 doi: 10.3389/fmicb.2016.01369. PubMed DOI PMC
Gibson DT, Parales RE. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol. 2000;11:236–243. doi: 10.1016/s0958-1669(00)00090-2. PubMed DOI
Fukuhara Y, Inakazu K, Kodama N, Kamimura N, Kasai D, et al. Characterization of the isophthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol. 2010;76:519–527. doi: 10.1128/AEM.01270-09. PubMed DOI PMC
Mahto JK, Neetu N, Waghmode B, Kuatsjah E, Sharma M, et al. Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. J Biol Chem. 2021;297:101416. doi: 10.1016/j.jbc.2021.101416. PubMed DOI PMC
Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, et al. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J Bacteriol. 2005;187:4050–4063. doi: 10.1128/JB.187.12.4050-4063.2005. PubMed DOI PMC
Gilbert ES, Crowley DE. Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl Microbiol Biotechnol. 1998;50:489–494. doi: 10.1007/s002530051325. PubMed DOI
Meynet P, Head IM, Werner D, Davenport RJ. Re-evaluation of dioxygenase gene phylogeny for the development and validation of a quantitative assay for environmental aromatic hydrocarbon degraders. FEMS Microbiol Ecol. 2015;91:fiv049. doi: 10.1093/femsec/fiv049. PubMed DOI PMC
Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Comparative genomics of the Rhodococcus genus shows wide distribution of biodegradation traits. Microorganisms. 2020;8:774. doi: 10.3390/microorganisms8050774. PubMed DOI PMC