A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation

. 2022 Jul 19 ; 11 () : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35852419

BACKGROUND: Booklice (psocids) in the genus Liposcelis (Psocoptera: Liposcelididae) are a group of important storage pests, found in libraries, grain storages, and food-processing facilities. Booklice are able to survive under heat treatment and typically possess high resistance to common fumigant insecticides, hence posing a threat to storage security worldwide. RESULTS: We assembled the genome of the booklouse, L. brunnea, the first genome reported in Psocoptera, using PacBio long-read sequencing, Illumina sequencing, and chromatin conformation capture (Hi-C) methods. After assembly, polishing, haplotype purging, and Hi-C scaffolding, we obtained 9 linkage groups (174.1 Mb in total) ranging from 12.1 Mb to 27.6 Mb (N50: 19.7 Mb), with the BUSCO completeness at 98.9%. In total, 15,543 genes were predicted by the Maker pipeline. Gene family analyses indicated the sensing-related gene families (OBP and OR) and the resistance-related gene families (ABC, EST, GST, UGT, and P450) expanded significantly in L. brunnea compared with those of their closest relatives (2 parasitic lice). Based on transcriptomic analysis, we found that the CYP4 subfamily from the P450 gene family functioned during phosphine fumigation; HSP genes, particularly those from the HSP70 subfamily, were upregulated significantly under high temperatures. CONCLUSIONS: We present a chromosome-level genome assembly of L. brunnea, the first genome reported for the order Psocoptera. Our analyses provide new insights into the gene family evolution of the louse clade and the transcriptomic responses of booklice to environmental stresses.

Zobrazit více v PubMed

Phillips  TW, Throne  JE.  Biorational approaches to managing stored-product insects. Annu Rev Entomol. 2010;55(1):375–97. PubMed

Nayak  MK, Collins  PJ, Throne  JE, et al. Biology and management of psocids infesting stored products. Annu Rev Entomol. 2014;59(1):279–97. PubMed

Stejskal  V, Hubert  J, Aulicky  R, et al. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J Stored Prod Res. 2015;64:122–32.

Athanassiou  CG, Rumbos  CI.  Emerging Pests in Durable Stored Products. In: Athanassiou  CG, Arthur  FH, editors. Recent Advances in Stored Product Protection. Berlin, Germany: Springer; 2018.

Lienhard  C, Smithers  CN.  Psocoptera (Insecta): World catalogue and bibliography. In: Lienhard  C, Smithers  CN, editors. Switzerland, Geneva: Muséum d'Histoire Naturelle de Genève; 2002.

Grimaldi  D, Engel  MS.  Fossil Liposcelididae and the lice ages (Insecta: Psocodea). Proc R Soc B Biol Sci. 2006;273(1586):625–33. PubMed PMC

Turner  BD.  Forming a clearer view of L. bostrychophilus. Environ Health. 1987;95:9–13.

Macfarlane  JA.  Damage to milled rice by psocids. Trop Stored Prod Inf. 1982;44:3–10.

Kučerová  Z.  Weight losses of wheat grains caused by psocid infestation. Plant Protect Sci.2012;38(3):103–7.

Turner  BD, Staines  NA, Brostoff  J, et al.  Allergy to psocids. In: The Organising Committee of the ICIPUE. Proceedings of the International Conference on Insect Pests in the Urban Environment (ICIPUE). Edinburgh, Scotland: Heriot-Watt University; 1996:7–10.

Hubert  J, Stejskal  V, Athanassiou  CG, et al. Health hazards associated with arthropod infestation of stored products. Annu Rev Entomol. 2018;63(1):553–73. PubMed

Turner  BD.  Liposcelis bostrychophila (Psocoptera: Liposcelididae), a stored food pest in the UK. Int J Pest Management. 1999;40(2):179–90.

Nayak  MK, Collins  PJ, Reid  SR.  Efficacy of grain protectants and phosphine against Liposcelis bostrychophila, L. entomophila, and L. paeta (Psocoptera: Liposcelidae). J Econ Entomol. 1998;91(5):1208–12.

Daglish  GJ, Wallbank  BE, Nayak  MK.  Synergized bifenthrin plus chlorpyrifos-methyl for control of beetles and psocids in sorghum in Australia. J Econ Entomol. 2003;96(2):525–32. PubMed

Nayak  MK, Daglish  GJ.  Potential of imidacloprid to control four species of psocids (Psocoptera: Liposcelididae) infesting stored grain. Pest Manage Sci. 2006;62(7):646–50. PubMed

Athanassiou  CG, Arthur  FH, Opit  GP, et al.  Insecticidal effect of diatomaceous earth against three species of stored-product psocids on maize, rice, and wheat. J Econ Entomol. 2009;102(4):1673–80. PubMed

Pike  V.  Laboratory assessment of the efficacy of phosphine and methyl bromide fumigation against all life stages of Liposcelis entomophilus (Enderlein). Crop Prot. 1994;13(2):141–5.

Cao  Y, Song  Y, Sun  GY. Proceedings of the 8th International Working Conference. In: Credland  PF, Armitage  DM, Bell  CH, Cogan  PM, Highley  E, editors. York, UK: CAB International; 2002; 662–7.

Nayak  MK, Collins  PJ, Pavic  H, et al.  Inhibition of egg development by phosphine in the cosmopolitan pest of stored products Liposcelis bostrychophila (Psocoptera: Liposcelididae). Pest Manage Sci. 2003;59(11):1191–6. PubMed

Wei  D, He  W, Miao  Z, et al.  Characterization of esterase genes involving Malathion detoxification and establishment of an RNA interference method in Liposcelis bostrychophila. Front Physiol. 2020;11:274. PubMed PMC

Wu  S, Dou  W, Wu  J, et al.  Purification and partial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Arch Insect Biochem Physiol. 2009;70(2):136–50. PubMed

Wei  D, Li  T, Chen  S, et al.  Molecular studies of psocids in China: recent advances. In: Proceedings of the 11th International Working Conference on Stored Product Protection. 2014:79–87.

Boivin  V, Reulet  G, Boisvert  O, et al.  Reducing the structure bias of RNA-Seq reveals a large number of non-annotated non-coding RNA. Nucleic Acids Res. 2020;48(5):2271–86. PubMed PMC

Lyal  CHC.  Phylogeny and classification of the Psocodea, with particular reference to the lice (Psocodea: Phthiraptera). Syst Entomol. 1985;10(2):145–65.

Johnson  KP, Dietrich  CH, Friedrich  F, et al.  Phylogenomics and the evolution of hemipteroid insects. Proc Natl Acad Sci. 2018;115(50):12775–80. PubMed PMC

de Moya  RS, Yoshizawa  K, Walden  KKO, et al.  Phylogenomics of parasitic and non-parasitic lice (Insecta: Psocodea): combining sequence data and exploring compositional bias solutions in next generation datasets. Syst Biol. 2021;70(4):719–38. PubMed

Broadhead  E.  A revision of the genus Liposcelis Motschulsky with notes on the position of this genus in the order Corrodentia and on the variability of ten Liposcelis species. Trans R Entomol Soc Lond. 1950;101(10):335–88.

Mockford  EL.  Psocoptera from sleeping nests of the dusky-footed wood rat in Southern California (Psocoptera: Atropidae, Psoquillidae, Liposcelidae). Pan Pacific Entomol. 1971;47:127–40.

Baz  A, Psocoptera from weaver bird nests (Aves: Ploceidae) in Equatorial Guinea (West-Africa). Ann Soc Entomol France. 1990;26:33–8.

Kirkness  EF, Haas  BJ, Sun  W, et al.  Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci. 2010;107(27):12168–73. PubMed PMC

Baldwin-Brown  JG, Villa  SM, Vickrey  AI, et al.  G3 Genes Genomes Genet. 2021;11:1–10.

Wong  SK, Thornton  IW. Chromosome numbers of some psocid genera (Psocoptera). Nature. 1966;211(5045):214–5. PubMed

Marçais  G, Kingsford  C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70. PubMed PMC

Ranallo-Benavidez  TR, Jaron  KS, Schatz  MC.  GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11:1432. PubMed PMC

Koren  S, Walenz  BP, Berlin  K, et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. PubMed PMC

Pacific Biosciences . pbmm2. https://github.com/PacificBiosciences/pbmm2. Accessed 26 May 2022.

Pacific Biosciences . gcpp. https://github.com/PacificBiosciences/gcpp. Accessed 26 May 2022.

Li  H.  Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013: 1303.3997v2.

Walker  BJ, Abeel  T, Shea  T, et al.  Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. PubMed PMC

Guan  D, McCarthy  SA, Wood  J, et al.  Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36(9):2896–8. PubMed PMC

Durand  NC, Shamim  MS, Machol  I, et al.  Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3(1):95–8. PubMed PMC

Dudchenko  O, Batra  SS, Omer  AD, et al.  De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333):92–5. PubMed PMC

Durand  NC, Robinson  JT, Shamim  MS, et al.  Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016;3(1):99–101. PubMed PMC

Waterhouse RM, Seppey M,Simão  FA,Manni  M,Ioannidis  P,Klioutchnikov  G,Kriventseva  EV,Zdobnov  EM.BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol Biol Evol. 2018;35(3):543–8. PubMed PMC

Flynn  JM, Hubley  R, Goubert  C, et al.  RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci. 2020;117(17):9451–7. PubMed PMC

Chen  N.  Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform. 2004;5:Unit 4.10 PubMed

Campbell  MS, Holt  C, Moore  B.  Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinform. 2014;48:1–39. PubMed PMC

Grabherr  MG, Haas  BJ, Yassour  M, et al.  Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. PubMed PMC

Camacho  C, Coulouris  G, Avagyan  V, et al.  BLAST+: architecture and applications. BMC Bioinf. 2009;10:421 PubMed PMC

Slater  GSC, Birney  E.  Automated generation of heuristics for biological sequence comparison. BMC Bioinf. 2005;6(1):31. PubMed PMC

Korf  I.  Gene finding in novel genomes. BMC Bioinf. 2004;5(1):59. PubMed PMC

Stanke  M, Morgenstern  B.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33(Web Server):W465–7. PubMed PMC

Buchfink  B, Reuter  K, Drost  H-G.  Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–8. PubMed PMC

Zdobnov  EM, Apweiler  R.  InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17(9):847–8. PubMed

Huerta-Cepas  J, Forslund  K, Coelho  LP, et al.  Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34(8):2115–22. PubMed PMC

Emms  DM, Kelly  S.  OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. PubMed PMC

Katoh  K, Standley  DM.  MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. PubMed PMC

Price  MN, Dehal  PS, Arkin  AP.  FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50. PubMed PMC

Yang  Z.  PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91. PubMed

Hedges  SB, Dudley  J, Kumar  S.  TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22(23):2971–2. PubMed

De Bie  T, Cristianini  N, Demuth  JP, et al.  CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71. PubMed

Laetsch  DR, Blaxter  ML.  KinFin: software for taxon-aware analysis of clustered protein sequences. G3 Genes Genomes Genet. 2017;7(10):3349–57. PubMed PMC

Vizueta  J, Sánchez-Gracia  A, Bitacora  Rozas J.: A comprehensive tool for the identification and annotation of gene families in genome assemblies. Mol Ecol Resour. 2020;20(5):1445–52. PubMed

Edgar  RC.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. PubMed PMC

Kim  D, Paggi  JM, Park  C, et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. PubMed PMC

Liao  Y, Smyth  GK, Shi  W.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. PubMed

Robinson  MD, McCarthy  DJ, Smyth  GK.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. PubMed PMC

Li  F, Zhao  X, Li  M, et al.  Insect genomes: progress and challenges. Insect Mol Biol. 2019;28(6):739–58. PubMed

Kidwell  MG.  Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002;115(1):49–63. PubMed

Haubold  B, Wiehe  T.  How repetitive are genomes?. BMC Bioinf. 2006;7:541 PubMed PMC

Dennis  AB, Ballesteros  GI, Robin  S, et al.  Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics. 2020;21:376. PubMed PMC

Lefébure  T, Morvan  C, Malard  F, et al.  Less effective selection leads to larger genomes. Genome Res. 2017;27(6):1016–28. PubMed PMC

Brand  P, Ramírez  SR.  The evolutionary dynamics of the odorant receptor gene family in corbiculate bees. Genome Biol Evol. 2017;9(8):2023–36. PubMed PMC

Ritschard  EA, Fitak  RR, Simakov  O, et al. Genomic signatures of G-protein-coupled receptor expansions reveal functional transitions in the evolution of cephalopod signal transduction. Proc R Soc B Biol Sci. 2019;286(1897):20182929. PubMed PMC

Sun  G, Xu  Y, Liu  H, et al.  Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat Commun. 2018;9:2683. PubMed PMC

ChuanLin  Y, XinHai  Y, MengYao  C, et al. Evolution analysis of cytochrome P450 gene family in parasitoid wasps. Zhongguo Sheng Wu Fang Zhi. 2019;35:335–42.

Guo  S, Cao  L, Song  W, et al.  Chromosome-level assembly of the melon thrips genome yields insights into evolution of a sap-sucking lifestyle and pesticide resistance. Mol Ecol Resour. 2020;20(4):1110–25. PubMed

Gu  X, Zhao  Y, Su  Y, et al.  A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta. Evol Appl. 2019;12(6):1147–63. PubMed PMC

Zhao  X, Li  Y, Zhao  Z, et al.  Extra sex combs buffers sleep-related stresses through regulating Heat shock proteins. FASEB J. 2021;35:e21190. PubMed

González-Tokman  D, Córdoba-Aguilar  A, Dáttilo  W, et al.  Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev. 2020;95(3):802–21. PubMed

Feng  S, Opit  G, Deng  W  et al.  Supporting data for “A chromosome-level genome of the booklouse, Liposcelis brunnea provides insight into lice evolution and environmental stress adaptation.”  GigaScience Database. 2022. 10.5524/102222. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...