A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35852419
PubMed Central
PMC9295366
DOI
10.1093/gigascience/giac062
PII: 6646446
Knihovny.cz E-zdroje
- Klíčová slova
- Liposcelis brunnea, booklice, genome assembly, high temperature tolerance, insecticide resistance, louse evolution,
- MeSH
- chromozomy MeSH
- genom mitochondriální * MeSH
- hmyz genetika MeSH
- Phthiraptera * genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Booklice (psocids) in the genus Liposcelis (Psocoptera: Liposcelididae) are a group of important storage pests, found in libraries, grain storages, and food-processing facilities. Booklice are able to survive under heat treatment and typically possess high resistance to common fumigant insecticides, hence posing a threat to storage security worldwide. RESULTS: We assembled the genome of the booklouse, L. brunnea, the first genome reported in Psocoptera, using PacBio long-read sequencing, Illumina sequencing, and chromatin conformation capture (Hi-C) methods. After assembly, polishing, haplotype purging, and Hi-C scaffolding, we obtained 9 linkage groups (174.1 Mb in total) ranging from 12.1 Mb to 27.6 Mb (N50: 19.7 Mb), with the BUSCO completeness at 98.9%. In total, 15,543 genes were predicted by the Maker pipeline. Gene family analyses indicated the sensing-related gene families (OBP and OR) and the resistance-related gene families (ABC, EST, GST, UGT, and P450) expanded significantly in L. brunnea compared with those of their closest relatives (2 parasitic lice). Based on transcriptomic analysis, we found that the CYP4 subfamily from the P450 gene family functioned during phosphine fumigation; HSP genes, particularly those from the HSP70 subfamily, were upregulated significantly under high temperatures. CONCLUSIONS: We present a chromosome-level genome assembly of L. brunnea, the first genome reported for the order Psocoptera. Our analyses provide new insights into the gene family evolution of the louse clade and the transcriptomic responses of booklice to environmental stresses.
Crop Research Institute Drnovská 507 161 06 Prague 6 Czech Republic
Department of Entomology and Plant Pathology Oklahoma State University Oklahoma 74078 Stillwater USA
Zobrazit více v PubMed
Phillips TW, Throne JE. Biorational approaches to managing stored-product insects. Annu Rev Entomol. 2010;55(1):375–97. PubMed
Nayak MK, Collins PJ, Throne JE, et al. Biology and management of psocids infesting stored products. Annu Rev Entomol. 2014;59(1):279–97. PubMed
Stejskal V, Hubert J, Aulicky R, et al. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J Stored Prod Res. 2015;64:122–32.
Athanassiou CG, Rumbos CI. Emerging Pests in Durable Stored Products. In: Athanassiou CG, Arthur FH, editors. Recent Advances in Stored Product Protection. Berlin, Germany: Springer; 2018.
Lienhard C, Smithers CN. Psocoptera (Insecta): World catalogue and bibliography. In: Lienhard C, Smithers CN, editors. Switzerland, Geneva: Muséum d'Histoire Naturelle de Genève; 2002.
Grimaldi D, Engel MS. Fossil Liposcelididae and the lice ages (Insecta: Psocodea). Proc R Soc B Biol Sci. 2006;273(1586):625–33. PubMed PMC
Turner BD. Forming a clearer view of L. bostrychophilus. Environ Health. 1987;95:9–13.
Macfarlane JA. Damage to milled rice by psocids. Trop Stored Prod Inf. 1982;44:3–10.
Kučerová Z. Weight losses of wheat grains caused by psocid infestation. Plant Protect Sci.2012;38(3):103–7.
Turner BD, Staines NA, Brostoff J, et al. Allergy to psocids. In: The Organising Committee of the ICIPUE. Proceedings of the International Conference on Insect Pests in the Urban Environment (ICIPUE). Edinburgh, Scotland: Heriot-Watt University; 1996:7–10.
Hubert J, Stejskal V, Athanassiou CG, et al. Health hazards associated with arthropod infestation of stored products. Annu Rev Entomol. 2018;63(1):553–73. PubMed
Turner BD. Liposcelis bostrychophila (Psocoptera: Liposcelididae), a stored food pest in the UK. Int J Pest Management. 1999;40(2):179–90.
Nayak MK, Collins PJ, Reid SR. Efficacy of grain protectants and phosphine against Liposcelis bostrychophila, L. entomophila, and L. paeta (Psocoptera: Liposcelidae). J Econ Entomol. 1998;91(5):1208–12.
Daglish GJ, Wallbank BE, Nayak MK. Synergized bifenthrin plus chlorpyrifos-methyl for control of beetles and psocids in sorghum in Australia. J Econ Entomol. 2003;96(2):525–32. PubMed
Nayak MK, Daglish GJ. Potential of imidacloprid to control four species of psocids (Psocoptera: Liposcelididae) infesting stored grain. Pest Manage Sci. 2006;62(7):646–50. PubMed
Athanassiou CG, Arthur FH, Opit GP, et al. Insecticidal effect of diatomaceous earth against three species of stored-product psocids on maize, rice, and wheat. J Econ Entomol. 2009;102(4):1673–80. PubMed
Pike V. Laboratory assessment of the efficacy of phosphine and methyl bromide fumigation against all life stages of Liposcelis entomophilus (Enderlein). Crop Prot. 1994;13(2):141–5.
Cao Y, Song Y, Sun GY. Proceedings of the 8th International Working Conference. In: Credland PF, Armitage DM, Bell CH, Cogan PM, Highley E, editors. York, UK: CAB International; 2002; 662–7.
Nayak MK, Collins PJ, Pavic H, et al. Inhibition of egg development by phosphine in the cosmopolitan pest of stored products Liposcelis bostrychophila (Psocoptera: Liposcelididae). Pest Manage Sci. 2003;59(11):1191–6. PubMed
Wei D, He W, Miao Z, et al. Characterization of esterase genes involving Malathion detoxification and establishment of an RNA interference method in Liposcelis bostrychophila. Front Physiol. 2020;11:274. PubMed PMC
Wu S, Dou W, Wu J, et al. Purification and partial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Arch Insect Biochem Physiol. 2009;70(2):136–50. PubMed
Wei D, Li T, Chen S, et al. Molecular studies of psocids in China: recent advances. In: Proceedings of the 11th International Working Conference on Stored Product Protection. 2014:79–87.
Boivin V, Reulet G, Boisvert O, et al. Reducing the structure bias of RNA-Seq reveals a large number of non-annotated non-coding RNA. Nucleic Acids Res. 2020;48(5):2271–86. PubMed PMC
Lyal CHC. Phylogeny and classification of the Psocodea, with particular reference to the lice (Psocodea: Phthiraptera). Syst Entomol. 1985;10(2):145–65.
Johnson KP, Dietrich CH, Friedrich F, et al. Phylogenomics and the evolution of hemipteroid insects. Proc Natl Acad Sci. 2018;115(50):12775–80. PubMed PMC
de Moya RS, Yoshizawa K, Walden KKO, et al. Phylogenomics of parasitic and non-parasitic lice (Insecta: Psocodea): combining sequence data and exploring compositional bias solutions in next generation datasets. Syst Biol. 2021;70(4):719–38. PubMed
Broadhead E. A revision of the genus Liposcelis Motschulsky with notes on the position of this genus in the order Corrodentia and on the variability of ten Liposcelis species. Trans R Entomol Soc Lond. 1950;101(10):335–88.
Mockford EL. Psocoptera from sleeping nests of the dusky-footed wood rat in Southern California (Psocoptera: Atropidae, Psoquillidae, Liposcelidae). Pan Pacific Entomol. 1971;47:127–40.
Baz A, Psocoptera from weaver bird nests (Aves: Ploceidae) in Equatorial Guinea (West-Africa). Ann Soc Entomol France. 1990;26:33–8.
Kirkness EF, Haas BJ, Sun W, et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci. 2010;107(27):12168–73. PubMed PMC
Baldwin-Brown JG, Villa SM, Vickrey AI, et al. G3 Genes Genomes Genet. 2021;11:1–10.
Wong SK, Thornton IW. Chromosome numbers of some psocid genera (Psocoptera). Nature. 1966;211(5045):214–5. PubMed
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70. PubMed PMC
Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11:1432. PubMed PMC
Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. PubMed PMC
Pacific Biosciences . pbmm2. https://github.com/PacificBiosciences/pbmm2. Accessed 26 May 2022.
Pacific Biosciences . gcpp. https://github.com/PacificBiosciences/gcpp. Accessed 26 May 2022.
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013: 1303.3997v2.
Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. PubMed PMC
Guan D, McCarthy SA, Wood J, et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36(9):2896–8. PubMed PMC
Durand NC, Shamim MS, Machol I, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3(1):95–8. PubMed PMC
Dudchenko O, Batra SS, Omer AD, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333):92–5. PubMed PMC
Durand NC, Robinson JT, Shamim MS, et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016;3(1):99–101. PubMed PMC
Waterhouse RM, Seppey M,Simão FA,Manni M,Ioannidis P,Klioutchnikov G,Kriventseva EV,Zdobnov EM.BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol Biol Evol. 2018;35(3):543–8. PubMed PMC
Flynn JM, Hubley R, Goubert C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci. 2020;117(17):9451–7. PubMed PMC
Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform. 2004;5:Unit 4.10 PubMed
Campbell MS, Holt C, Moore B. Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinform. 2014;48:1–39. PubMed PMC
Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. PubMed PMC
Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinf. 2009;10:421 PubMed PMC
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinf. 2005;6(1):31. PubMed PMC
Korf I. Gene finding in novel genomes. BMC Bioinf. 2004;5(1):59. PubMed PMC
Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33(Web Server):W465–7. PubMed PMC
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–8. PubMed PMC
Zdobnov EM, Apweiler R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17(9):847–8. PubMed
Huerta-Cepas J, Forslund K, Coelho LP, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34(8):2115–22. PubMed PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. PubMed PMC
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50. PubMed PMC
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91. PubMed
Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22(23):2971–2. PubMed
De Bie T, Cristianini N, Demuth JP, et al. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71. PubMed
Laetsch DR, Blaxter ML. KinFin: software for taxon-aware analysis of clustered protein sequences. G3 Genes Genomes Genet. 2017;7(10):3349–57. PubMed PMC
Vizueta J, Sánchez-Gracia A, Bitacora Rozas J.: A comprehensive tool for the identification and annotation of gene families in genome assemblies. Mol Ecol Resour. 2020;20(5):1445–52. PubMed
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. PubMed PMC
Kim D, Paggi JM, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. PubMed PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. PubMed
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. PubMed PMC
Li F, Zhao X, Li M, et al. Insect genomes: progress and challenges. Insect Mol Biol. 2019;28(6):739–58. PubMed
Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002;115(1):49–63. PubMed
Haubold B, Wiehe T. How repetitive are genomes?. BMC Bioinf. 2006;7:541 PubMed PMC
Dennis AB, Ballesteros GI, Robin S, et al. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics. 2020;21:376. PubMed PMC
Lefébure T, Morvan C, Malard F, et al. Less effective selection leads to larger genomes. Genome Res. 2017;27(6):1016–28. PubMed PMC
Brand P, Ramírez SR. The evolutionary dynamics of the odorant receptor gene family in corbiculate bees. Genome Biol Evol. 2017;9(8):2023–36. PubMed PMC
Ritschard EA, Fitak RR, Simakov O, et al. Genomic signatures of G-protein-coupled receptor expansions reveal functional transitions in the evolution of cephalopod signal transduction. Proc R Soc B Biol Sci. 2019;286(1897):20182929. PubMed PMC
Sun G, Xu Y, Liu H, et al. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat Commun. 2018;9:2683. PubMed PMC
ChuanLin Y, XinHai Y, MengYao C, et al. Evolution analysis of cytochrome P450 gene family in parasitoid wasps. Zhongguo Sheng Wu Fang Zhi. 2019;35:335–42.
Guo S, Cao L, Song W, et al. Chromosome-level assembly of the melon thrips genome yields insights into evolution of a sap-sucking lifestyle and pesticide resistance. Mol Ecol Resour. 2020;20(4):1110–25. PubMed
Gu X, Zhao Y, Su Y, et al. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta. Evol Appl. 2019;12(6):1147–63. PubMed PMC
Zhao X, Li Y, Zhao Z, et al. Extra sex combs buffers sleep-related stresses through regulating Heat shock proteins. FASEB J. 2021;35:e21190. PubMed
González-Tokman D, Córdoba-Aguilar A, Dáttilo W, et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev. 2020;95(3):802–21. PubMed
Feng S, Opit G, Deng W et al. Supporting data for “A chromosome-level genome of the booklouse, Liposcelis brunnea provides insight into lice evolution and environmental stress adaptation.” GigaScience Database. 2022. 10.5524/102222. PubMed DOI PMC