Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils

. 2019 ; 14 (8) : e0221253. [epub] 20190822

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31437185

Extended soil contamination by polychlorinated biphenyls (PCBs) represents a global environmental issue that can hardly be addressed with the conventional remediation treatments. Rhizoremediation is a sustainable alternative, exploiting plants to stimulate in situ the degradative bacterial communities naturally occurring in historically polluted areas. This approach can be enhanced by the use of bacterial strains that combine PCB degradation potential with the ability to promote plant and root development. With this aim, we established a collection of aerobic bacteria isolated from the soil of the highly PCB-polluted site "SIN Brescia-Caffaro" (Italy) biostimulated by the plant Phalaris arundinacea. The strains, selected on biphenyl and plant secondary metabolites provided as unique carbon source, were largely dominated by Actinobacteria and a significant number showed traits of interest for remediation, harbouring genes homologous to bphA, involved in the PCB oxidation pathway, and displaying 2,3-catechol dioxygenase activity and emulsification properties. Several strains also showed the potential to alleviate plant stress through 1-aminocyclopropane-1-carboxylate deaminase activity. In particular, we identified three Rhodococcus strains able to degrade in vitro several PCB congeners and to promote lateral root emergence in the model plant Arabidopsis thaliana in vivo. In addition, these strains showed the capacity to colonize the root system and to increase the plant biomass in PCB contaminated soil, making them ideal candidates to sustain microbial-assisted PCB rhizoremediation through a bioaugmentation approach.

Zobrazit více v PubMed

Gioia R, Akindele A J, Adebusoye S A, Asante K A, Tanabe S, Buekens A et al. 2014. Polychlorinated biphenyls (PCBs) in Africa: a review of environmental levels. Environmental Science Pollution Research 21:6278–6289. 10.1007/s11356-013-1739-1 PubMed DOI

Dvorska A, Lammel G, Klanova J, Holoubek I. 2008. Kosetice, Czech Republic–ten years of air pollution monitoring and four years of evaluating the origin of persistent organic pollutants. Environmental Pollution 156:403–408. 10.1016/j.envpol.2008.01.034 PubMed DOI

Hermanson M H, Johnson G W. 2007. Polychlorinated biphenyls in tree bark near a former manufacturing plant in Anniston, Alabama. Chemosphere 68:191–198. 10.1016/j.chemosphere.2006.11.068 PubMed DOI

Turrio-Baldassarri L, Abate V, Alivernini S, Battistelli C L, Carasi S, Casella M et al. 2007. A study on PCB, PCDD/PCDF industrial contamination in a mixed urban-agricultural area significantly affecting the food chain and the human exposure. Part I: Soil and feed. Chemosphere 67:1822–1830. 10.1016/j.chemosphere.2006.05.124 PubMed DOI

Xing Y, Lu Y, Dawson R W, Shi Y, Zhang H, Wang T et al. 2005. A spatial temporal assessment of pollution from PCBs in China. Chemosphere 60:731–739. 10.1016/j.chemosphere.2005.05.001 PubMed DOI

Beyer A, Biziuk M. 2009. Environmental fate and global distribution of polychlorinated biphenyls. Reviews of Environmental Contamination and Toxicology 201:137–158. 10.1007/978-1-4419-0032-6_5 PubMed DOI

Jepson P D, Deaville R, Barber J L, Aguilar A, Borrell A, Murphy S et al. 2016. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Scientific Reports 6:18573 10.1038/srep18573 PubMed DOI PMC

Di Guardo A, Terzaghi E, Raspa G, Borin S, Mapelli F, Chouaia B et al. 2017. Differentiating current and past PCB and PCDD/F sources: The role of a large contaminated soil site in an industrialized city area. Environmental Pollution. 10.1016/j.envpol.2017.01.033 PubMed DOI

http://www.salute.gov.it/imgs/C_17_pubblicazioni_821_allegato.pdf

Gomes H I, Dias-Ferreira C, Ribeiro A B. 2013. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science of the Total Environment 445:237–260. 10.1016/j.scitotenv.2012.11.098 PubMed DOI

Segura A, Rodríguez-Conde S, Ramos C, Ramos J L. 2009. Bacterial responses and interactions with plants during rhizoremediation. Microbial Biotechnology 2(4):452–464. 10.1111/j.1751-7915.2009.00113.x PubMed DOI PMC

Terzaghi E, Zanardini E, Morosini C, Raspa G, Borin S, Mapelli F et al. 2018. Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. Science of the Total Environment 612,544–560. 10.1016/j.scitotenv.2017.08.189 PubMed DOI

Kuiper I, Lagendijk E L, Bloemberg G V, Lugtenberg B J J. 2004. Rhizoremediation: A beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions 17:6–15. 10.1094/MPMI.2004.17.1.6 PubMed DOI

Ancona V, Caracciolo A B, Grenni P, Di Lenola M, Campanale C, Calabrese A et al. 2016. Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in Southern Italy. New Biotechnology. 38:65–73. 10.1016/j.nbt.2016.09.006 PubMed DOI

Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C et al. 2017. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions. Sci Total Environ 575:1395–1406. 10.1016/j.scitotenv.2016.09.218 PubMed DOI

Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R et al. 2012. Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149.

Pham T T M, Pino Rodriguez N J, Hijri M, Sylvestre M. 2015. Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS ONE 10:e0126033 10.1371/journal.pone.0126033 PubMed DOI PMC

LeFevre G H, Hozalsky R M, Novak P J. 2013. Root exudate enhanced contaminant desorption: An abiotic contribution to the rhizosphere effect. Environmental Science Technology 47:11545–11553. 10.1021/es402446v PubMed DOI

Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. 2016. Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. International Journal of Molecular Sciences 17:1205. PubMed PMC

El Fantroussi S, Agathos S N. 2005. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology 8:268–275. 10.1016/j.mib.2005.04.011 PubMed DOI

Thijs S, Van Dillewijn P, Sillen W, Truyens S, Holtappels M, D´Haen J et al. 2014. Exploring the rhizospheric and endophytic bacterialcommunities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 385:15–36.

Abhilash P C, Dubey R K, Tripathi V, Gupta V K, Singh H B. 2016. Plant growth-promoting microorganisms for environmental sustainability. Trends in Biotechnology 34:11 10.1016/j.tibtech.2016.05.005 PubMed DOI

Terzaghi E, Vergani L, Mapelli F, Borin S, Raspa G, Zanardini E et al. 2019. Rhizoremediation of weathered PCBs in a heavily contaminated agricultural soil: Results of a biostimulation trial in semi field conditions. Science of the Total Environment 686,484–496. 10.1016/j.scitotenv.2019.05.458 PubMed DOI

Meggo R E, Schnoor J L. 2013. Rhizospere redox cycling and implications for rhizosphere biotransformation of selected polychlorinated biphenyl (PCB) congeners. Ecological Engineering 57:285–292. 10.1016/j.ecoleng.2013.04.052 PubMed DOI PMC

Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S et al. 2012. A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. Plos One 7:e48479 10.1371/journal.pone.0048479 PubMed DOI PMC

Uhlik O, Strejcek M, Junkova P, Sanda M, Hroudova M, Vlcek C et al. 2011. Matrix-assisted laser desorption ionization (MALDI)–time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Applied and Environmental Microbiology 77:19, 6858–6866. 10.1128/AEM.05465-11 PubMed DOI PMC

Donnelly P K, Hedge R S, Fletcher J S. 1994. Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28, 981–988.

Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R. 2008. Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Frontiers in Microbiology. 10.3389/fmicb.2018.00232 PubMed DOI PMC

Leigh M B, Prouzova P, Mackova M, Macek T, Nagle D P, Fletcher J S. 2006. Polychlorinated Biphenyl (PCB)-Degrading Bacteria Associated with Trees in a PCB-Contaminated Site. Applied and Environmental Microbiology 72:2331–2342. 10.1128/AEM.72.4.2331-2342.2006 PubMed DOI PMC

Master E R, Mohn W W. 1998. Psychrotolerant Bacteria Isolated from Arctic Soil That Degrade Polychlorinated Biphenyls at Low Temperatures. Applied and Environmental Microbiology 64, 4823–4829. PubMed PMC

Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C et al. 2010. Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Applied and Environmental Microbiology 76:7444–7450. 10.1128/AEM.01747-10 PubMed DOI PMC

Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A et al. 2013. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Research International 10.1155/2013/248078 PubMed DOI PMC

Yoon S H, Ha S M, Kwon S, Lim J, Kim Y, Seo H et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol. 67:1613–1617. 10.1099/ijsem.0.001755 PubMed DOI PMC

Leewis M-C, Uhlik O, Leigh M B. 2016. Synergistic processing of biphenyl and benzoate: carbon flow through the bacterial community in polychlorinated-biphenyl- contaminated soil. Scientific Reports. 10.1038/srep22145 PubMed DOI PMC

Iwai S, Chai B, Sul W J, Cole J R, Hashsham S A, Tiedje J M. 2010. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. The ISME Journal 4, 279–285. 10.1038/ismej.2009.104 PubMed DOI PMC

Margesin R, Gander S, Zacke G, Gounot A M, Schinner F. 2003. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles. 7:451–458. 10.1007/s00792-003-0347-2 PubMed DOI

Barbato M, Mapelli F, Magagnini M, Chouaia B, Armeni M, Marasco R et al.2016. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments. Marine Pollution Bulletin 104:211–220. 10.1016/j.marpolbul.2016.01.029 PubMed DOI

Belimov A A, Hontzeas N, Safronova V I, Demchinskaya S V, Piluzza G, Bullitta S et al. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry 37:241–250. 10.1016/j.soilbio.2004.07.033 DOI

Taniyasu S, Kannan K, Holoubek I, Ansorgova A, Horii Y, Hanari N et al. 2003. Isomer-specific analysis of chlorinated biphenyls, naphthalenes and dibenzofurans in Delor: polychlorinated biphenyl preparations from the former Czechoslovakia. Environmental Pollution 126, 169–168. PubMed

Ridl J, Suman J, Fraraccio S, Hradilova M, Strejcek M, Cajthaml T et al. 2018. Complete genome sequence of Pseudomonas alcaliphila JAB1 (= DSM 26533), a versatile degrader of organic pollutants. Standards in Genomic Sciences 13:3 10.1186/s40793-017-0306-7 PubMed DOI PMC

Čvančarová M, Křesinová Z, Filipová A, Covino S, Cajthaml T. 2012. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88:1317–1323. 10.1016/j.chemosphere.2012.03.107 PubMed DOI

Masai E, Yamada A, Healy J M, Hatta T, Kimbara K, Fukuda M et al. 1995. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology 6, 2079–2085. PubMed PMC

Vergani L, Mapelli F, Marasco R, Crotti E, Fusi M, Di Guardo A et al. 2017. Bacteria associated to plants naturally selected in a historical PCB polluted soil show potential to sustain natural attenuation. Frontiers in Microbiology 8, 1385 10.3389/fmicb.2017.01385 PubMed DOI PMC

Arenskötter M, Bröker D, Steinbüchel A. 2004. Biology of the metabolically diverse genus Gordonia. Applied and Environmental Microbiology 70,6:3195–3204. 10.1128/AEM.70.6.3195-3204.2004 PubMed DOI PMC

Fu H, Wei Y, Zou Y, Li M, Wang F, Chen J et al. 2014. Research progress on the Actinomyces Arthrobacter. Advances in Microbiology 4:747–753. 10.4236/aim.2014.412081 DOI

Furukawa K, Fujihara H. 2008. Microbial degradation of polychlorinated byphenils: Biochemical and molecular features. Journal of Bioscience and Bioengineering 105, 443–449. PubMed

Fuchs G, Boll M, Heider J. 2011. Microbial degradation of aromatic compounds—from one strategy to four. Nature Reviews Microbiology. 10.1038/nrmicro2652 PubMed DOI

Kügler J K, LeRoes-Hill M, Syldatk C, Hausmann R. 2015. Surfactants tailored by the class Actinobacteria. Frontiers in Microbiology 6:12 10.3389/fmicb.2015.00012 PubMed DOI PMC

Passatore L, Rossetti C, Juwarkard A A, Massacci A. 2014. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. Journal of Hazardous Materials 278:189–202. 10.1016/j.jhazmat.2014.05.051 PubMed DOI

Xu L, Teng Y, Li Z-G, Norton J M, Luo Y-M. 2010. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inoculum. Science of the Total Environment 408:1007–1013. 10.1016/j.scitotenv.2009.11.031 PubMed DOI

Toussaint J-P, Pham T T, Barriault D, Sylvestre M. 2012. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Applied Microbiology and Biotechnology 95:1589–603. 10.1007/s00253-011-3824-z PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...