Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil

. 2011 Oct ; 77 (19) : 6858-66. [epub] 20110805

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21821747

Bacteria that are able to utilize biphenyl as a sole source of carbon were extracted and isolated from polychlorinated biphenyl (PCB)-contaminated soil vegetated by horseradish. Isolates were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The usage of MALDI Biotyper for the classification of isolates was evaluated and compared to 16S rRNA gene sequence analysis. A wide spectrum of bacteria was isolated, with Arthrobacter, Serratia, Rhodococcus, and Rhizobium being predominant. Arthrobacter isolates also represented the most diverse group. The use of MALDI Biotyper in many cases permitted the identification at the level of species, which was not achieved by 16S rRNA gene sequence analyses. However, some isolates had to be identified by 16S rRNA gene analyses if MALDI Biotyper-based identification was at the level of probable or not reliable identification, usually due to a lack of reference spectra included in the database. Overall, this study shows the possibility of using MALDI-TOF MS and MALDI Biotyper for the fast and relatively nonlaborious identification/classification of soil isolates. At the same time, it demonstrates the dominant role of employing 16S rRNA gene analyses for the identification of recently isolated strains that can later fill the gaps in the protein-based identification databases.

Zobrazit více v PubMed

Abraham W. R., Wenderoth D. F., Glasser W. 2005. Diversity of biphenyl degraders in a chlorobenzene polluted aquifer. Chemosphere 58:529–533 PubMed

Alispahic M., et al. 2010. Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J. Med. Microbiol. 59:295–301 PubMed

Arnold R. J., Reilly J. P. 1998. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun. Mass Spectrom. 12:630–636 PubMed

Asturias J. A., Diaz E., Timmis K. N. 1995. The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from gram-negative bacteria. Gene 156:11–18 PubMed

Baldwin B. R., Nakatsu C. H., Nies L. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl. Environ. Microbiol. 69:3350–3358 PubMed PMC

Barbuddhe S. B., et al. 2008. Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74:5402–5407 PubMed PMC

Bedard D. L., Wagner R. E., Brennan M. J., Haberl M. L., Brown J. F., Jr. 1987. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53:1094–1102 PubMed PMC

Bopp L. H. 1986. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1:23–29

Cardenas E., Tiedje J. M. 2008. New tools for discovering and characterizing microbial diversity. Curr. Opin. Biotechnol. 19:544–549 PubMed

Chang H., et al. 1992. Molecular cloning and characterization of catechol 2,3-dioxygenases from biphenyl/polychlorinated biphenyls-degrading bacteria. Biochem. Biophys. Res. Commun. 187:609–614 PubMed

Chatterjee S., Dutta T. K. 2008. Metabolic cooperation of Gordonia sp. strain MTCC 4818 and Arthrobacter sp. strain WY in the utilization of butyl benzyl phthalate: effect of a novel co-culture in the degradation of a mixture of phthalates. Microbiology 154:3338–3346 PubMed

Chen Y., Murrell J. C. 2010. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18:157–163 PubMed

Claydon M. A., Davey S. N., Edwards-Jones V., Gordon D. B. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 14:1584–1586 PubMed

Cole J. R., et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141–D145 PubMed PMC

Dubois D., et al. 2010. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48:941–945 PubMed PMC

Dumont M. G., Murrell J. C. 2005. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3:499–504 PubMed

Furukawa K. 2000. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J. Gen. Appl. Microbiol. 46:283–296 PubMed

Furukawa K., Hayase N., Taira K., Tomizuka N. 1989. Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J. Bacteriol. 171:5467–5472 PubMed PMC

Furukawa K., Suenaga H., Goto M. 2004. Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186:5189–5196 PubMed PMC

Gilbert E. S., Crowley D. E. 1997. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63:1933–1938 PubMed PMC

Gilbert E. S., Crowley D. E. 1998. Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl. Microbiol. Biotechnol. 50:489–494 PubMed

Hamdy M. K. 1989. Mutant strains for biodegradation of PCBs in bioreactor system, p. 196–197 In Hatcher K. J. (ed.), Proceedings of the 1989 Georgia Water Resources Conference. The University of Georgia, Athens, GA

Hettick J. M., et al. 2006. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics 6:6416–6425 PubMed

Holland R. D., et al. 1996. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 10:1227–1232 PubMed

Hong Q., Dong X., He L., Jiang X., Li S. 2009. Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster. Int. Biodeterior. Biodegrad. 63:365–370

Ilina E. N., et al. 2009. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J. Mol. Diagn. 11:75–86 PubMed PMC

Ilina E. N., et al. 2010. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the study of Helicobacter pylori. Rapid Commun. Mass Spectrom. 24:328–334 PubMed

Ilori M. O., Robinson G. K., Adebusoye S. A. 2008. Aerobic mineralization of 4,4′-dichlorobiphenyl and 4-chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl. World J. Microbiol. Biotechnol. 24:1259–1265

Ionescu M., et al. 2009. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int. Biodeterior. Biodegrad. 63:667–672

Iwasaki T., Miyauchi K., Masai E., Fukuda M. 2006. Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 72:5396–5402 PubMed PMC

Iwasaki T., et al. 2007. Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in a PCB degrader, Rhodococcus sp. strain RHA1. Biosci. Biotechnol. Biochem. 71:993–1002 PubMed

Jurinke C., Oeth P., van den Boom D. 2004. MALDI-TOF mass spectrometry—a versatile tool for high-performance DNA analysis. Mol. Biotechnol. 26:147–163 PubMed

Kirk T. K., Farrell R. L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465–505 PubMed

Kolinska R., Drevinek M., Jakubu V., Zemlickova H. 2008. Species identification of Campylobacter jejuni ssp. jejuni and C. coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and PCR. Folia Microbiol. (Praha) 53:403–409 PubMed

Lee E. H., Cho K. S. 2009. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. J. Hazard. Mater. 167:669–674 PubMed

Leigh M. B., Fletcher J. S., Fu X., Schmitz F. J. 2002. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36:1579–1583 PubMed

Leigh M. B., et al. 2007. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1:134–148 PubMed

Leigh M. B., et al. 2006. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microbiol. 72:2331–2342 PubMed PMC

Liyanage R., Lay J. O., Jr. 2006. An introduction to MALDI-TOF MS, p. 39–60 In Wilkins C. L., Lay J. O., Jr. (ed.), Identification of microorganisms by mass spectrometry. John Wiley & Sons, Inc., Hoboken, NJ

Lopez-Garcia P., Moreira D. 2008. Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 159:67–73 PubMed

Macek T., Mackova M., Kas J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18:23–34 PubMed

Mackova M., et al. 2006. Phytoremediation of polychlorinated biphenyls, p. 143–167 In Mackova M., Dowling D., Macek T. (ed.), Phytoremediation and rhizoremediation, vol. 9A Theoretical background Springer, Dordrecht, Netherlands

Mackova M., et al. 2009. Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ. Sci. Pollut. Res. 16:817–829 PubMed

Mackova M., et al. 2010. Bacterial degradation of polychlorinated biphenyls, p. 347–366 In Loy A., Mandl M., Barton L. L. (ed.), Geomicrobiology: molecular and environmental perspective, 1st ed. Springer, Dordrecht, Netherlands

Maier T., Klepel S., Renner U., Kostrzewa M. 2006. Fast and reliable MALDI-TOF MS-based microorganism identification. Nat. Methods 3:i–ii

Manangeeswaran M., Ramalingam V. V., Kumar K., Mohan N. 2007. Degradation of indulin, a kraft pine lignin, by Serratia marcescens. J. Environ. Sci. Health B 42:321–327 PubMed

Masai E., et al. 1995. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61:2079–2085 PubMed PMC

Michaud L., Di M. G., Bruni V., Lo G. A. 2007. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 54:1754–1761 PubMed

Nagy E., Maier T., Urban E., Terhes G., Kostrzewa M. 2009. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 15:796–802 PubMed

Novakova H., et al. 2002. PCB metabolism by Pseudomonas sp. P2. Int. Biodeterior. Biodegrad. 50:47–54

Patrauchan M. A., et al. 2008. Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J. Bacteriol. 190:37–47 PubMed PMC

Perestelo F., Falcon M. A., Carnicero A., Rodriguez A., Delafuente G. 1994. Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnol. Lett. 16:299–302

Radajewski S., McDonald I. R., Murrell J. C. 2003. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14:296–302 PubMed

Rybkina D. O., Plotnikova E. G., Dorofeeva L. V., Mironenko Y. L., Demakov V. A. 2003. A new aerobic gram-positive bacterium with a unique ability to degrade ortho- and para-chlorinated biphenyls. Microbiology 72:759–765 PubMed

Ryslava E., et al. 2003. Study of PCB degradation in real contaminated soil. Fresenius Environ. Bull. 12:296–301

Sakai M., et al. 2002. Diversity of 2,3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1. J. Biosci. Bioeng. 93:421–427 PubMed

Sauer S., Kliem M. 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 8:74–82 PubMed

Seto M., et al. 1995. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61:3353–3358 PubMed PMC

Shuai J. J., et al. 2010. Identification and analysis of polychlorinated biphenyls (PCBs)-biodegrading bacterial strains in Shanghai. Curr. Microbiol. 61:477–483 PubMed

Singer A. C., Gilbert E. S., Luepromchai E., Crowley D. E. 2000. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl. Microbiol. Biotechnol. 54:838–843 PubMed

Singer A. C., Wong C. S., Crowley D. E. 2002. Differential enantioselective transformation of atropisomeric polychlorinated biphenyls by multiple bacterial strains with different inducing compounds. Appl. Environ. Microbiol. 68:5756–5759 PubMed PMC

Staley J. T., Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321–346 PubMed

Strohalm M., Kavan D., Novak P., Volny M., Havlicek V. 2010. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 82:4648–4651 PubMed

Sutherland J. B., Rafii F. 2006. Cultural, serological, and genetic methods for identification of bacteria, p. 1–21 In Wilkins C. L., Lay J. O., Jr. (ed.), Identification of microorganisms by mass spectrometry. John Wiley & Sons, Inc., Hoboken, NJ

Sylvestre M., et al. 1996. Sequencing of Comamonas testosteroni strain B-356-biphenyl/chlorobiphenyl dioxygenase genes: evolutionary relationships among Gram-negative bacterial biphenyl dioxygenases. Gene 174:195–202 PubMed

Taguchi K., Motoyama M., Iida T., Kudo T. 2007. Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of rhodococci. Biosci. Biotechnol. Biochem. 71:1136–1144 PubMed

Taira K., Hirose J., Hayashida S., Furukawa K. 1992. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267:4844–4853 PubMed

Tamura K., et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. doi:10.1093/molbev/msr121 PubMed DOI PMC

Thompson J. R., Marcelino L. A., Polz M. F. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 30:2083–2088 PubMed PMC

Torsvik V., Ovreas L., Thingstad T. F. 2002. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066 PubMed

Uhlik O., Jecna K., Leigh M. B., Mackova M., Macek T. 2009. DNA-based stable isotope probing: a link between community structure and function. Sci. Total Environ. 407:3611–3619 PubMed

Uhlik O., et al. 2009. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75:6471–6477 PubMed PMC

Vezina J., Barriault D., Sylvestre M. 2008. Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit. J. Mol. Microbiol. Biotechnol. 15:139–151 PubMed

Vicuna R. 1988. Bacterial degradation of lignin. Enzyme Microb. Technol. 10:646–655

Warren R., et al. 2004. Functional characterization of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. strain RHA1. J. Bacteriol. 186:7783–7795 PubMed PMC

Yang X., et al. 2007. Characterization and functional analysis of a novel gene cluster involved in biphenyl degradation in Rhodococcus sp. strain R04. J. Appl. Microbiol. 103:2214–2224 PubMed

Zimmermann W. 1990. Degradation of lignin by bacteria. J. Biotechnol. 13:119–130

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease

. 2021 Feb 15 ; 11 (1) : 3810. [epub] 20210215

Genomic analysis of dibenzofuran-degrading Pseudomonas veronii strain Pvy reveals its biodegradative versatility

. 2021 Feb 09 ; 11 (2) : .

Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils

. 2019 ; 14 (8) : e0221253. [epub] 20190822

Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates

. 2018 ; 9 () : 1294. [epub] 20180619

Distinct Communities of Poplar Endophytes on an Unpolluted and a Risk Element-Polluted Site and Their Plant Growth-Promoting Potential In Vitro

. 2018 May ; 75 (4) : 955-969. [epub] 20171110

Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

. 2016 Jul 29 ; 17 (8) : . [epub] 20160729

Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment

. 2015 ; 6 () : 1268. [epub] 20151119

Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

. 2015 ; 6 () : 113. [epub] 20150302

Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil

. 2012 ; 7 (7) : e40653. [epub] 20120713

Zobrazit více v PubMed

GENBANK
JF813120, JF813121, JF813122, JF813123, JF813124, JF813125, JF813126, JF813127, JF813128, JF813129, JF813130, JF813131, JF813132, JF813133, JF813134, JF813135, JF813136, JF813137, JF813138, JF813139, JF813140, JF813141, JF813142, JF813143, JF813144, JF813145, JF813146, JF813147, JF813148, JF813149, JF813150, JF813151, JF813152, JF813153, JF813154, JF813155, JF813156, JF813157, JF813158, JF813159, JF813160, JF813161, JF813162, JF813163, JF813164, JF813165, JF813166, JF813167, JF813168, JF813169, JF813170, JF813171, JF813172, JF813173

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...