Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
21821747
PubMed Central
PMC3187117
DOI
10.1128/aem.05465-11
PII: AEM.05465-11
Knihovny.cz E-zdroje
- MeSH
- Armoracia MeSH
- Bacteria chemie klasifikace genetika izolace a purifikace MeSH
- bifenylové sloučeniny metabolismus MeSH
- biodiverzita MeSH
- DNA bakterií chemie genetika MeSH
- látky znečišťující půdu metabolismus MeSH
- molekulární sekvence - údaje MeSH
- půdní mikrobiologie * MeSH
- rhizosféra MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- techniky typizace bakterií metody MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- bifenylové sloučeniny MeSH
- biphenyl MeSH Prohlížeč
- DNA bakterií MeSH
- látky znečišťující půdu MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
Bacteria that are able to utilize biphenyl as a sole source of carbon were extracted and isolated from polychlorinated biphenyl (PCB)-contaminated soil vegetated by horseradish. Isolates were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The usage of MALDI Biotyper for the classification of isolates was evaluated and compared to 16S rRNA gene sequence analysis. A wide spectrum of bacteria was isolated, with Arthrobacter, Serratia, Rhodococcus, and Rhizobium being predominant. Arthrobacter isolates also represented the most diverse group. The use of MALDI Biotyper in many cases permitted the identification at the level of species, which was not achieved by 16S rRNA gene sequence analyses. However, some isolates had to be identified by 16S rRNA gene analyses if MALDI Biotyper-based identification was at the level of probable or not reliable identification, usually due to a lack of reference spectra included in the database. Overall, this study shows the possibility of using MALDI-TOF MS and MALDI Biotyper for the fast and relatively nonlaborious identification/classification of soil isolates. At the same time, it demonstrates the dominant role of employing 16S rRNA gene analyses for the identification of recently isolated strains that can later fill the gaps in the protein-based identification databases.
Zobrazit více v PubMed
Abraham W. R., Wenderoth D. F., Glasser W. 2005. Diversity of biphenyl degraders in a chlorobenzene polluted aquifer. Chemosphere 58:529–533 PubMed
Alispahic M., et al. 2010. Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J. Med. Microbiol. 59:295–301 PubMed
Arnold R. J., Reilly J. P. 1998. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun. Mass Spectrom. 12:630–636 PubMed
Asturias J. A., Diaz E., Timmis K. N. 1995. The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from gram-negative bacteria. Gene 156:11–18 PubMed
Baldwin B. R., Nakatsu C. H., Nies L. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl. Environ. Microbiol. 69:3350–3358 PubMed PMC
Barbuddhe S. B., et al. 2008. Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74:5402–5407 PubMed PMC
Bedard D. L., Wagner R. E., Brennan M. J., Haberl M. L., Brown J. F., Jr. 1987. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53:1094–1102 PubMed PMC
Bopp L. H. 1986. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1:23–29
Cardenas E., Tiedje J. M. 2008. New tools for discovering and characterizing microbial diversity. Curr. Opin. Biotechnol. 19:544–549 PubMed
Chang H., et al. 1992. Molecular cloning and characterization of catechol 2,3-dioxygenases from biphenyl/polychlorinated biphenyls-degrading bacteria. Biochem. Biophys. Res. Commun. 187:609–614 PubMed
Chatterjee S., Dutta T. K. 2008. Metabolic cooperation of Gordonia sp. strain MTCC 4818 and Arthrobacter sp. strain WY in the utilization of butyl benzyl phthalate: effect of a novel co-culture in the degradation of a mixture of phthalates. Microbiology 154:3338–3346 PubMed
Chen Y., Murrell J. C. 2010. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18:157–163 PubMed
Claydon M. A., Davey S. N., Edwards-Jones V., Gordon D. B. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 14:1584–1586 PubMed
Cole J. R., et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141–D145 PubMed PMC
Dubois D., et al. 2010. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48:941–945 PubMed PMC
Dumont M. G., Murrell J. C. 2005. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3:499–504 PubMed
Furukawa K. 2000. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J. Gen. Appl. Microbiol. 46:283–296 PubMed
Furukawa K., Hayase N., Taira K., Tomizuka N. 1989. Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J. Bacteriol. 171:5467–5472 PubMed PMC
Furukawa K., Suenaga H., Goto M. 2004. Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186:5189–5196 PubMed PMC
Gilbert E. S., Crowley D. E. 1997. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63:1933–1938 PubMed PMC
Gilbert E. S., Crowley D. E. 1998. Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl. Microbiol. Biotechnol. 50:489–494 PubMed
Hamdy M. K. 1989. Mutant strains for biodegradation of PCBs in bioreactor system, p. 196–197 In Hatcher K. J. (ed.), Proceedings of the 1989 Georgia Water Resources Conference. The University of Georgia, Athens, GA
Hettick J. M., et al. 2006. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics 6:6416–6425 PubMed
Holland R. D., et al. 1996. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 10:1227–1232 PubMed
Hong Q., Dong X., He L., Jiang X., Li S. 2009. Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster. Int. Biodeterior. Biodegrad. 63:365–370
Ilina E. N., et al. 2009. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J. Mol. Diagn. 11:75–86 PubMed PMC
Ilina E. N., et al. 2010. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the study of Helicobacter pylori. Rapid Commun. Mass Spectrom. 24:328–334 PubMed
Ilori M. O., Robinson G. K., Adebusoye S. A. 2008. Aerobic mineralization of 4,4′-dichlorobiphenyl and 4-chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl. World J. Microbiol. Biotechnol. 24:1259–1265
Ionescu M., et al. 2009. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int. Biodeterior. Biodegrad. 63:667–672
Iwasaki T., Miyauchi K., Masai E., Fukuda M. 2006. Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 72:5396–5402 PubMed PMC
Iwasaki T., et al. 2007. Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in a PCB degrader, Rhodococcus sp. strain RHA1. Biosci. Biotechnol. Biochem. 71:993–1002 PubMed
Jurinke C., Oeth P., van den Boom D. 2004. MALDI-TOF mass spectrometry—a versatile tool for high-performance DNA analysis. Mol. Biotechnol. 26:147–163 PubMed
Kirk T. K., Farrell R. L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465–505 PubMed
Kolinska R., Drevinek M., Jakubu V., Zemlickova H. 2008. Species identification of Campylobacter jejuni ssp. jejuni and C. coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and PCR. Folia Microbiol. (Praha) 53:403–409 PubMed
Lee E. H., Cho K. S. 2009. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. J. Hazard. Mater. 167:669–674 PubMed
Leigh M. B., Fletcher J. S., Fu X., Schmitz F. J. 2002. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36:1579–1583 PubMed
Leigh M. B., et al. 2007. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1:134–148 PubMed
Leigh M. B., et al. 2006. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microbiol. 72:2331–2342 PubMed PMC
Liyanage R., Lay J. O., Jr. 2006. An introduction to MALDI-TOF MS, p. 39–60 In Wilkins C. L., Lay J. O., Jr. (ed.), Identification of microorganisms by mass spectrometry. John Wiley & Sons, Inc., Hoboken, NJ
Lopez-Garcia P., Moreira D. 2008. Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 159:67–73 PubMed
Macek T., Mackova M., Kas J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18:23–34 PubMed
Mackova M., et al. 2006. Phytoremediation of polychlorinated biphenyls, p. 143–167 In Mackova M., Dowling D., Macek T. (ed.), Phytoremediation and rhizoremediation, vol. 9A Theoretical background Springer, Dordrecht, Netherlands
Mackova M., et al. 2009. Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ. Sci. Pollut. Res. 16:817–829 PubMed
Mackova M., et al. 2010. Bacterial degradation of polychlorinated biphenyls, p. 347–366 In Loy A., Mandl M., Barton L. L. (ed.), Geomicrobiology: molecular and environmental perspective, 1st ed. Springer, Dordrecht, Netherlands
Maier T., Klepel S., Renner U., Kostrzewa M. 2006. Fast and reliable MALDI-TOF MS-based microorganism identification. Nat. Methods 3:i–ii
Manangeeswaran M., Ramalingam V. V., Kumar K., Mohan N. 2007. Degradation of indulin, a kraft pine lignin, by Serratia marcescens. J. Environ. Sci. Health B 42:321–327 PubMed
Masai E., et al. 1995. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61:2079–2085 PubMed PMC
Michaud L., Di M. G., Bruni V., Lo G. A. 2007. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 54:1754–1761 PubMed
Nagy E., Maier T., Urban E., Terhes G., Kostrzewa M. 2009. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 15:796–802 PubMed
Novakova H., et al. 2002. PCB metabolism by Pseudomonas sp. P2. Int. Biodeterior. Biodegrad. 50:47–54
Patrauchan M. A., et al. 2008. Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J. Bacteriol. 190:37–47 PubMed PMC
Perestelo F., Falcon M. A., Carnicero A., Rodriguez A., Delafuente G. 1994. Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnol. Lett. 16:299–302
Radajewski S., McDonald I. R., Murrell J. C. 2003. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14:296–302 PubMed
Rybkina D. O., Plotnikova E. G., Dorofeeva L. V., Mironenko Y. L., Demakov V. A. 2003. A new aerobic gram-positive bacterium with a unique ability to degrade ortho- and para-chlorinated biphenyls. Microbiology 72:759–765 PubMed
Ryslava E., et al. 2003. Study of PCB degradation in real contaminated soil. Fresenius Environ. Bull. 12:296–301
Sakai M., et al. 2002. Diversity of 2,3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1. J. Biosci. Bioeng. 93:421–427 PubMed
Sauer S., Kliem M. 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 8:74–82 PubMed
Seto M., et al. 1995. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61:3353–3358 PubMed PMC
Shuai J. J., et al. 2010. Identification and analysis of polychlorinated biphenyls (PCBs)-biodegrading bacterial strains in Shanghai. Curr. Microbiol. 61:477–483 PubMed
Singer A. C., Gilbert E. S., Luepromchai E., Crowley D. E. 2000. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl. Microbiol. Biotechnol. 54:838–843 PubMed
Singer A. C., Wong C. S., Crowley D. E. 2002. Differential enantioselective transformation of atropisomeric polychlorinated biphenyls by multiple bacterial strains with different inducing compounds. Appl. Environ. Microbiol. 68:5756–5759 PubMed PMC
Staley J. T., Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321–346 PubMed
Strohalm M., Kavan D., Novak P., Volny M., Havlicek V. 2010. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 82:4648–4651 PubMed
Sutherland J. B., Rafii F. 2006. Cultural, serological, and genetic methods for identification of bacteria, p. 1–21 In Wilkins C. L., Lay J. O., Jr. (ed.), Identification of microorganisms by mass spectrometry. John Wiley & Sons, Inc., Hoboken, NJ
Sylvestre M., et al. 1996. Sequencing of Comamonas testosteroni strain B-356-biphenyl/chlorobiphenyl dioxygenase genes: evolutionary relationships among Gram-negative bacterial biphenyl dioxygenases. Gene 174:195–202 PubMed
Taguchi K., Motoyama M., Iida T., Kudo T. 2007. Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of rhodococci. Biosci. Biotechnol. Biochem. 71:1136–1144 PubMed
Taira K., Hirose J., Hayashida S., Furukawa K. 1992. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267:4844–4853 PubMed
Tamura K., et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. doi:10.1093/molbev/msr121 PubMed DOI PMC
Thompson J. R., Marcelino L. A., Polz M. F. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 30:2083–2088 PubMed PMC
Torsvik V., Ovreas L., Thingstad T. F. 2002. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066 PubMed
Uhlik O., Jecna K., Leigh M. B., Mackova M., Macek T. 2009. DNA-based stable isotope probing: a link between community structure and function. Sci. Total Environ. 407:3611–3619 PubMed
Uhlik O., et al. 2009. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75:6471–6477 PubMed PMC
Vezina J., Barriault D., Sylvestre M. 2008. Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit. J. Mol. Microbiol. Biotechnol. 15:139–151 PubMed
Vicuna R. 1988. Bacterial degradation of lignin. Enzyme Microb. Technol. 10:646–655
Warren R., et al. 2004. Functional characterization of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. strain RHA1. J. Bacteriol. 186:7783–7795 PubMed PMC
Yang X., et al. 2007. Characterization and functional analysis of a novel gene cluster involved in biphenyl degradation in Rhodococcus sp. strain R04. J. Appl. Microbiol. 103:2214–2224 PubMed
Zimmermann W. 1990. Degradation of lignin by bacteria. J. Biotechnol. 13:119–130
Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment
GENBANK
JF813120, JF813121, JF813122, JF813123, JF813124, JF813125, JF813126, JF813127, JF813128, JF813129, JF813130, JF813131, JF813132, JF813133, JF813134, JF813135, JF813136, JF813137, JF813138, JF813139, JF813140, JF813141, JF813142, JF813143, JF813144, JF813145, JF813146, JF813147, JF813148, JF813149, JF813150, JF813151, JF813152, JF813153, JF813154, JF813155, JF813156, JF813157, JF813158, JF813159, JF813160, JF813161, JF813162, JF813163, JF813164, JF813165, JF813166, JF813167, JF813168, JF813169, JF813170, JF813171, JF813172, JF813173