Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25784919
PubMed Central
PMC4345804
DOI
10.3389/fpls.2015.00113
Knihovny.cz E-zdroje
- Klíčová slova
- T-RFLP, bacteria, endophyte, hyperaccumulator, microbial diversity, phytoremediation, selenium,
- Publikační typ
- časopisecké články MeSH
Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties.
Biology Department Colorado State University Fort Collins CO USA
FMC Corporation Center of Excellence for Agricultural Biosolutions Research Triangle Park NC USA
Institute of Botany Academy of Sciences of the Czech Republic Pruhonice Czech Republic
Zobrazit více v PubMed
Afkar E., Lisak J., Saltikov C., Basu P., Oremland R. S., Stolz J. F. (2003). The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 226, 107–112. 10.1016/S0378-1097(03)00609-8 PubMed DOI
Alford E. A., Pilon-Smits E. A. H., Paschke M. (2010). Metallophytes—a view from the rhizosphere. Plant Soil 337, 33–50 10.1007/s11104-010-0482-3 DOI
Amann R. I., Ludwig W., Schleifer K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. PubMed PMC
Avazeri C., Turner R. J., Pommier J., Weiner J. H., Giordano G., Vermeglio A. (1997). Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143, 1181–1189. 10.1099/00221287-143-4-1181 PubMed DOI
Bãnuelos G. S., Walse S. S., Pickering I. J., Fakra S. C., Marcus M. A., Pilon-Smits E. A. H., et al. (2011). Localization, chemical speciation, and semi-quantification of selenium in cactus pear, Opuntia ficus-indica, grown in saline drainage sediment. Plant Physiol. 155, 315–327. PubMed PMC
Barac T., Taghavi S., Borremans B., Provoost A., Oeyen L., Colpaert J. V., et al. . (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22, 583–588. 10.1038/nbt960 PubMed DOI
Bledsoe T. L., Cantafio A. W., Macy J. M. (1999). Fermented whey—an inexpensive feed source for a laboratory-scale selenium-bioremediation reactor system inoculated with Thauera selenatis. Appl. Microbiol. Biotechnol. 51, 682–685. 10.1007/s002530051452 PubMed DOI
Bonner J., Bandurski R. S. (1952). Studies of the physiology, pharmacology, and biochemistry of the auxins. Annu. Rev. Plant Physiol. 3, 59–86 10.1146/annurev.pp.03.060152.000423 DOI
Brader G., Compant S., Mitter B., Trognitz F., Sessitsch A. (2014). Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 27, 30–37. 10.1016/j.copbio.2013.09.012 PubMed DOI PMC
Cappa J. J., Pilon-Smits E. A. H. (2014). Evolutionary aspects of hyperaccumulation. Planta 239, 267–275. 10.1007/s00425-013-1983-0 PubMed DOI
Chen B., Shen J., Zhang X., Pan F., Yang X., Feng Y. (2014). The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS ONE 9:e106826. 10.1371/journal.pone.0106826 PubMed DOI PMC
Cho K. M., Hong S. Y., Lee S. M., Kim Y. H., Kahng G. G., Lim Y. P., et al. . (2007). Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb. Ecol. 54, 341–351. 10.1007/s00248-007-9208-3 PubMed DOI
Compant S., Reiter B., Sessitsch A., Nowak J., Clement C. (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71, 1685–1693. 10.1128/AEM.71.4.1685-1693.2005 PubMed DOI PMC
Croes S., Weyens N., Colpaert J., Vangronsveld J. (2014). Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: an evaluation of sampling and isolation protocols. Environ. Microbiol. 10.1111/1462-2920.12701 PubMed DOI
de Souza M. P., Amini A., Dojka M. A., Pickering I. J., Dawson S. C., Pace N. R., et al. . (2001). Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond. Appl. Environ. Microbiol. 67, 3785–3794. 10.1128/AEM.67.9.3785-3794.2001 PubMed DOI PMC
de Souza M. P., Chu D., Zhao M., Zayed A. M., Ruzin S. E., Schichnes D., et al. . (1999). Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol. 119, 565–574. 10.1104/pp.119.2.565 PubMed DOI PMC
Di Gregorio S., Lampis S., Malorgio F., Petruzzelli G., Pezzarossa B., Vallini G. (2006). Brassica juncea can improve selenite and selenate abatement in selenium contaminated soils through the aid of its rhizospheric bacterial population. Plant Soil 285, 233–244 10.1007/s11104-006-9010-x DOI
Doty S. L., Oakley B., Xin G., Kang J. W., Singleton G., Khan Z., et al. (2009). Diazotrophic endophytes of native black cottonwood and willow. Curr. Microbiol. 47, 23–33 10.1007/BF03179967 DOI
Dowling D. N., Germaine K., Franks A., Ryan R. P., Ryan D. J. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9. 10.1111/j.1574-6968.2007.00918.x PubMed DOI
Durán P., Acuña J., Jorquera M., Azcón R., Paredes C., Rengel Z., et al. (2014). Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils 50, 983–990 10.1007/s00374-014-0920-0 DOI
El-Mehdawi A. F., Cappa J. J., Fakra S. C., Self J., Pilon-Smits E. A. H. (2012). Interactions of selenium and non-accumulators during co-cultivation on seleniferous or non-seleniferous soil—the importance of having good neighbors. New Phytol. 194, 264–277. 10.1111/j.1469-8137.2011.04043.x PubMed DOI
El-Mehdawi A. F., Pilon-Smits E. A. H. (2012). Ecological aspects of plant selenium hyperaccumulation. Plant Biol. 14, 1–10. 10.1111/j.1438-8677.2011.00535.x PubMed DOI
El Mehdawi A. F., Lindblom S. D., Cappa J. J., Fakra S. C., Pilon-Smits E. A. H. (2015). Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-ray microprobe analysis. Int. J. Phytoremediation 17. PubMed
El-Mehdawi A. F., Quinn C. F., Pilon-Smits E. A. H. (2011). Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? New Phytol. 191, 120–131. 10.1111/j.1469-8137.2011.03670.x PubMed DOI
Farinati S., DalCorso G., Bona E., Corbella M., Lampis S., Cecconi D., et al. . (2009). Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9, 4837–4850. 10.1002/pmic.200900036 PubMed DOI
Farinati S., DalCorso G., Panigati M., Furini A. (2011). Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J. Exp. Bot. 62, 3433–3447. 10.1093/jxb/err015 PubMed DOI PMC
Farris J. S., Albert V. A., Källersjö M., Lipscomb D., Kluge A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124 10.1111/j.1096-0031.1996.tb00196.x PubMed DOI
Fassel V. A. (1978). Quantitative elemental analyses by plasma emission spectroscopy. Science 202, 183–191. 10.1126/science.202.4364.183 PubMed DOI
Freeman J. L., Zhang L. H., Marcus M. A., Fakra S., McGrath S. P., Pilon-Smits E. A. H. (2006). Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol. 142, 124–134. 10.1104/pp.106.081158 PubMed DOI PMC
Galeas M. L., Klamper E. M., Bennett L. E., Freeman J. L., Kondratieff B. C., Quinn C. F., et al. . (2008). Selenium hyperaccumulation reduced plant arthropod loads in the field. New Phytol. 177, 715–724. 10.1111/j.1469-8137.2007.02285.x PubMed DOI
Galeas M. L., Zhang L. H., Freeman J. L., Wegner M., Pilon-Smits E. A. H. (2007). Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol. 173, 517–525. 10.1111/j.1469-8137.2006.01943.x PubMed DOI
Germaine K. J., Liu X., Cabellos G. G., Hogan J. P., Ryan D., Dowling D. N. (2003). Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4- dichlorophenoxyacetic acid. FEMS Microbiol. Ecol. 57, 302–310. 10.1111/j.1574-6941.2006.00121.x PubMed DOI
Glick B. R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117. 10.1139/m95-015 PubMed DOI
Glick B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012:963401. 10.6064/2012/963401 PubMed DOI PMC
Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. (1982). Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131–138. 10.1016/0003-2697(82)90118-X PubMed DOI
Guan S. H., Sattler I., Lin W. H., Guo D. A., Grabley S. (2005). p-Aminoacetophenonic acids produced by a mangrove endophyte: Streptomyces griseus subspecies. J. Nat. Prod. 68, 1198–1200. 10.1021/np0500777 PubMed DOI
Gupta A., Gopal M., Tilak K. V. (2000). Mechanism of plant growth promotion by rhizobacteria. Indian J. Exp. Biol. 38, 856–862. PubMed
Hansen D., Duda P., Zayed A. M., Terry N. (1998). Selenium removal by constructed wetlands: role of biological volatiliza tion. Environ. Sci. Technol. 32, 591–597. 10.1021/es970502l PubMed DOI
Hanson B., Garifullina G. F., Lindblom S. D., Wangeline A., Ackley A., Kramer K., et al. (2003). Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol. 159, 461–469 10.1046/j.1469-8137.2003.00786.x PubMed DOI
Harris J., Schneberg K. A., Pilon-Smits E. A. H. (2014). Sulfur—selenium—molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239, 479–491. 10.1007/s00425-013-1996-8 PubMed DOI
Hunter W. J. (2014). Pseudomonas seleniipraecipitans proteins potentially involved in selenite reduction. Curr. Microbiol. 69, 69–74. 10.1007/s00284-014-0555-2 PubMed DOI
Hunter W. J., Manter D. K. (2009). Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr. Microbiol. 58, 493–498. 10.1007/s00284-009-9358-2 PubMed DOI
Jackson C. R., Randolph K. C., Osborn S. L., Tyler H. L. (2013). Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 13:274. 10.1186/1471-2180-13-274 PubMed DOI PMC
Jha N. P., Gupta G., Jha P., Mehrotra R. (2013). Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J. Agri. Sci. 3, 73–84.
Kessi J., Ramuz M., Wehrli E., Spycher M., Bachoefen R. (1999). Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 65, 4734–4740. PubMed PMC
Lane D. J. (1991). 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, eds Stackebrandt E., Goodfellow M. (New York, NY: John Wiley and Sons; ), 115–176.
Li W. C., Wong M. H. (2012). Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene. J. Hazard. Mater. 209–210, 421–433. 10.1016/j.jhazmat.2012.01.055 PubMed DOI
Lindblom S. D., Valdez-Barillas J. R., Fakra S. C., Marcus M. A., Wangeline A. L., Pilon-Smits E. A. H. (2013). Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ. Exp. Bot. 88, 33–42 10.1016/j.envexpbot.2011.12.011 DOI
Liu M., Cai Q. X., Liu H. Z., Zhang B. H., Yan J. P., Yuan Z. M. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J. Appl. Microbiol. 93, 374–379. 10.1046/j.1365-2672.2002.01693.x PubMed DOI
Lodewyckx C., Vangronsveld J., Porteous F., Moore E. R. B., Taghavi S., Mezgeay M., et al. (2002). Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 10.1080/0735-260291044377 DOI
Macek T., Macková M., Kás J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18, 23–34. 10.1016/S0734-9750(99)00034-8 PubMed DOI
Mackova M., Prouzova P., Stursa P., Ryslava E., Uhlik O., Beranova K., et al. . (2009). Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ. Sci. Pollut. Res. Int. 16, 817–829. 10.1007/s11356-009-0240-3 PubMed DOI
Miller C. M., Miller R. V., Garton-Kenny D., Redgrave B., Sears J., Condron M. M., et al. . (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. J. Appl. Microbiol. 84, 937–944. 10.1046/j.1365-2672.1998.00415.x PubMed DOI
Mishra R. R., Parajapati S., Das J., Dangar T. K., Das N., Thatoi H. (2011). Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84, 1231–1237. 10.1016/j.chemosphere.2011.05.025 PubMed DOI
Moore F. P., Barac T., Borremans B., Oeyen L., Vangronsveld J., van der Lelie D., et al. . (2006). Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst. Appl. Microbiol. 29, 539–556. 10.1016/j.syapm.2005.11.012 PubMed DOI
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 437–497 10.1111/j.1399-3054.1962.tb08052.x DOI
Pereira S. I., Castro P. M. (2014). Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ. Sci. Pollut. Res. Int. 21, 14110–14123. 10.1007/s11356-014-3309-6 PubMed DOI
Pilon-Smits E. A. H. (2005). Phytoremediation. Annu. Rev. Plant Biol. 56, 15–39. 10.1146/annurev.arplant.56.032604.144214 PubMed DOI
Quinn C. F., Freeman J. L., Reynolds R. J., Cappa J. J., Fakra S. C., Marcus M. A., et al. . (2010). Selenium hyperaccumulation offers protection from cell disruptor herbivores. BMC Ecol. 10:19. 10.1186/1472-6785-10-19 PubMed DOI PMC
Quinn C. F., Wyant K., Wangeline A. L., Shulman J., Galeas M. L., Valdez J. R., et al. (2011). Selenium hyperaccumulation increases leaf decomposition rate in a seleniferous habitat. Plant Soil 341, 51–61 10.1007/s11104-010-0446-7 DOI
Qureshi M. A., Ahmad Z. A., Akhtar N., Iqbal A., Mujeeb F., Shakir M. A. (2012). Role of phosphate solubilizing bacteria (psb) in enhancing P availability and promoting cotton growth. J. Anim. Plant Sci. 22, 204–210.
Ryan R. P., Germaine K., Franks A., Ryan D. J., Dowling D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9. 10.1111/j.1574-6968.2007.00918.x PubMed DOI
Ryu C., Farag M. A., Hu C., Reddy M. S., Wei H., Paré P. W., et al. . (2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100, 4927–4932. 10.1073/pnas.0730845100 PubMed DOI PMC
Sessitsch A., Kuffner M., Kidd P., Vangronsveld J., Wenzel W. W., Fallmann K., et al. . (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol. Biochem. 60, 182–194. 10.1016/j.soilbio.2013.01.012 PubMed DOI PMC
Shin S. H., Lim Y., Lee S. E., Yang N. W., Rhee J. H. (2001). CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44, 89–95. 10.1016/S0167-7012(00)00229-3 PubMed DOI
Shyu C., Soule T., Bent S. J., Foster J. A., Forney L. J. (2007). MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. J. Microb. Ecol. 53, 562–570. 10.1007/s00248-006-9106-0 PubMed DOI
Staicu L. C., van Hullebusch E. D., Lens P. N. L., Pilon-Smits E. A. H., Oturan M. A. (2015). Electrocoagulation of colloidal biogenic selenium. Environ. Sci. Pollut. Res. Int. 22, 3127–3137. 10.1007/s11356-014-3592-2 PubMed DOI
Strobel G., Daisy B., Castillo U., Harper J. (2004). Natural products from endophytic microorganisms. J. Nat. Prod. 67, 257–268. 10.1021/np030397v PubMed DOI
Swofford D. L. (2001). PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer.
Taghavi S., Barac T., Greenberg B., Vangronsveld J., van der Lelie D. (2005). Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl. Environ. Microbiol. 71, 8500–8505. 10.1128/AEM.71.12.8500-8505.2005 PubMed DOI PMC
Taghavi S., van der Lelie D., Hoffman A., Zhang Y. B., Walla M. D. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. PLoS Genet. 28, 346–358 10.1371/journal.pgen.1000943 PubMed DOI PMC
ter Braak C. J. F., Šmilauer P. (1998). CANOCO Reference Manual and User's Guide to Canoco for Windows. Software for Canonical Community Ordination (Version 4). Wageningen: Centre of Biometry.
Thamthiankul S., Moar W. J., Miller M. E., Panbangred W. (2004). Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl. Microbiol. Biotechnol. 65, 183–192. 10.1007/s00253-004-1606-6 PubMed DOI
Truyens S., Jambon I., Croes S., Janssen J., Weyens N., Mench M., et al. . (2014). The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int. J. Phytoremediation. 16, 643–659. 10.1080/15226514.2013.837027 PubMed DOI
Uhlik O., Strejcek M., Junkova P., Sanda M., Hroudova M., Vlcek C., et al. . (2011). Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 77, 6858–6866. 10.1128/AEM.05465-1 PubMed DOI PMC
Ulrich K., Ulrich A., Ewald D. (2008). Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol. Ecol. 63, 169–180. 10.1111/j.1574-6941.2007.00419.x PubMed DOI
Valdez Barillas J. R., Quinn C. F., Freeman J. L., Lindblom S. D., Marcus M. S., Fakra S. C., et al. (2012). Selenium distribution and speciation in hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol. 159, 1834–1844 10.1104/pp.112.199307 PubMed DOI PMC
Vallini G., Di Gregorio S., Lampis S. (2005). Rhizosphere-induced selenium precipitation for possible applications in phytoremediation of Se polluted effluents. Z. Naturforsch. 60C, 349–356. 10.1515/znc-2005-3-419 PubMed DOI
Vangronsveld J., Herzig R., Weyens N., Boulet J., Adriaensen K., Ruttens A., et al. . (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. Int. 16, 765–794. 10.1007/s11356-009-0213-6 PubMed DOI
Visioli G., D'Egidio S., Vamerali T., Mattarozzi M., Sanangelantoni A. M. (2014). Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117C, 538–544. 10.1016/j.chemosphere.2014.09.014 PubMed DOI
Wang Y., Yang X., Zhang X., Dong L., Zhang J., Wei Y., et al. . (2014). Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. J. Agric. Food Chem. 62, 1783–1791. 10.1021/jf404152u PubMed DOI
Weyens N., Gielen M., Beckers B., Boulet J., van der Lelie D., Taghavi S., et al. . (2013). Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Plant Biol. 16, 988–996. 10.1111/plb.12141 PubMed DOI
Weyens N., van der Lelie D., Taghavi S., Vangronsveld J. (2009). Phytoremediation: plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20, 248–254. 10.1016/j.copbio.2009.02.012 PubMed DOI
Yanke L. J., Bryant R. D., Laishley E. J. (1995). Hydrogenase (I) of Clostridium pasteurianum functions a novel selenite reductase. Anaerobe 1, 61–67. 10.1016/S1075-9964(95)80457-9 PubMed DOI
Yasin M., El-Mehdawi A. F., Anwar A., Pilon-Smits E. A. H., Faisal M. (2015). Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)—Applications in phytoremediation and biofortification. Int. J. Phytorem. 17, 341–347. 10.1080/15226514.2014.922920 PubMed DOI
Zarcinas B. A., Cartwright B., Spouncer L. R. (1987). Nitric acid digestion and multielement analysis of plant material by inductively coupled plasma spectrometry. Commun. Soil. Sci. Plant Anal. 18, 131–146 10.1080/00103628709367806 DOI
Zawadzka A. M., Crawford R. L., Paszczynski A. J. (2006). Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions. Appl. Environ. Microbiol. 72, 3119–3129. 10.1128/AEM.72.5.3119-3129.2006 PubMed DOI PMC
Zayed A., Gowthaman S., Terry N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 27, 715–721 10.2134/jeq1998.00472425002700030032x DOI
Zhu Y.-G., Pilon-Smits E. A. H., Zhao F.-J., Williams P. N., Meharg A. A. (2009). Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 19, 436–442. 10.1016/j.tplants.2009.06.006 PubMed DOI