High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26785729
PubMed Central
PMC4824853
DOI
10.1074/mcp.m115.054593
PII: S1535-9476(20)33619-7
Knihovny.cz E-zdroje
- MeSH
- akutní lymfatická leukemie diagnóza imunologie metabolismus MeSH
- diferenciální diagnóza MeSH
- dítě MeSH
- gelová chromatografie metody MeSH
- imunofenotypizace metody MeSH
- imunoprecipitace MeSH
- kojenec MeSH
- laboratorní automatizace MeSH
- lidé MeSH
- mladiství MeSH
- nádorové buněčné linie MeSH
- předškolní dítě MeSH
- proteomika metody MeSH
- protilátky farmakologie MeSH
- regulace genové exprese u leukemie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protilátky MeSH
Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients.To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p< 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation.In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study.
Zobrazit více v PubMed
Pui C. H. (2010) Recent Research Advances in Childhood Acute Lymphoblastic Leukemia. J. Formos. Med. Assoc. 109, 777–787 PubMed
Mullighan C. G. (2011) New Strategies in Acute Lymphoblastic Leukemia: Translating Advances in Genomics into Clinical Practice. Clin. Cancer Res. 17, 396–400 PubMed
Roberts K. G., and Mullighan C. G. (2011) How new advances in genetic analysis are influencing the understanding and treatment of childhood acute leukemia. Curr. Opin. Pediatr. 23, 34–40 PubMed
Yeoh E. J., Ross M. E., Shurtleff S. A., Williams W. K., Patel D., Mahfouz R., Behm F. G., Raimondi S. C., Relling M. V., Patel A., Cheng C., Campana D., Wilkins D., Zhou X., Li J., Liu H., Pui C. H., Evans W. E., Naeve C., Wong L., and Downing J. R. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 PubMed
Flotho C., Coustan-Smith E., Pei D., Cheng C., Song G., Pui C. H., Downing J. R., and Campana D. (2007) A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 110, 1271–1277 PubMed PMC
Bhojwani D., Kang H., Moskowitz N. P., Min D. J., Lee H., Potter J. W., Davidson G., Willman C. L., Borowitz M. J., Belitskaya-Levy I., Hunger S. P., Raetz E. A, and Carroll W. L. (2006) Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 108, 711–7 PubMed PMC
Cario G., Stanulla M., Fine B. M., Teuffel O., Neuhoff N. V., Schrauder A., Flohr T., Schäfer B. W., Bartram C. R., Welte K., Schlegelberger B., and Schrappe M. (2005) Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 105, 821–826 PubMed
Kalina T., Flores-Montero J., Van Der Velden V. H., Martin-Ayuso M., Böttcher S., Ritgen M., Almeida J., Lhermitte L., Asnafi V., Mendonça A., de, Tute R., Cullen M., Sedek L., Vidriales M. B., Pérez J. J., te, Marvelde J. G., Mejstrikova E., Hrusak O., Szczepański T., van, Dongen J. J., Orfao A. (2012) EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26, 1986–2010 PubMed PMC
Van Dongen J. J., Lhermitte L., Böttcher S., Almeida J., Van Der Velden V. H., Flores-Montero J., Rawstron A., Asnafi V., Lécrevisse Q., Lucio P., Mejstrikova E., Szczepański T., Kalina T., de Tute R., Brüggemann M., Sedek L., Cullen M., Langerak a W., Mendonça A., Macintyre E., Martin-Ayuso M., Hrusak O., Vidriales M. B., and Orfao A. (2012) EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26, 1908–1975 PubMed PMC
Hrušák O., and Porwit-MacDonald A. (2002) Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 16, 1233–1258 PubMed
Vaskova M., Mejstrikova E., Kalina T., Martinkova P., Omelka M., Trka J., Stary J., and Hrusak O. (2005) Transfer of genomics information to flow cytometry: expression of CD27 and CD44 discriminates subtypes of acute lymphoblastic leukemia. Leukemia 19, 876–878 PubMed
Kornblau S. M., Tibes R., Qiu Y. H., Chen W., Kantarjian H. M., Andreeff M., Coombes K. R., and Mills G. B. (2009) Functional proteomic profiling of AML predicts response and survival. Blood 113, 154–164 PubMed PMC
Hofmann A., Gerrits B., Schmidt A., Bock T., Bausch-Fluck D., Aebersold R., and Wollscheid B. (2010) Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood 116, e26–34 PubMed
Mirkowska P., Hofmann A., Sedek L., Slamova L., Mejstrikova E., Szczepanski T., Schmitz M., Cario G., Stanulla M., Schrappe M., Van Der, Velden V. H., Bornhauser B. C., Wollscheid B., and Bourquin J. (2013) Leukemia surfaceome analysis reveals new disease-associated features Leukemia surfaceome analysis reveals new disease-associated features. Blood 121, e149–e159 PubMed
Wu W., Slåstad H., de la Rosa Carrillo D., Frey T., Tjønnfjord G., Boretti E., Aasheim H. C., Horejsi V., and Lund-Johansen F. (2009) Antibody array analysis with label-based detection and resolution of protein size. Mol. Cell. Proteomics 8, 245–257 PubMed
Slaastad H., Wu W., Goullart L., Kanderova V., Tjønnfjord G., Stuchly J., Kalina T., Holm A., and Lund-Johansen F. (2011) Multiplexed immuno-precipitation with 1725 commercially available antibodies to cellular proteins. Proteomics 11, 4578–4582 PubMed
Stuchly J., Kanderova V., Fiser K., Cerna D., Holm A., Wu W., Hrusak O., Lund-Johansen F., and Kalina T. (2012) An automated analysis of highly complex flow cytometry-based proteomic data. Cytom. A 81, 120–129 PubMed
Mejstrikova E., Volejnikova J., Fronkova E., Zdrahalova K., Kalina T., Sterba J., Jabali Y., Mihal V., Blazek B., Cerna Z., Prochazkova D., Hak J., Zemanova Z., Jarosova M., Oltova A., Sedlacek P., Schwarz J., Zuna J., Trka J., Stary J., and Hrusak O. (2010) Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria. Haematologica 95, 928–935 PubMed PMC
Mejstříková E., Froňková E., Kalina T., Omelka M., Batinic D., Dubravcic K., Pospíšilová K., Vášková M., Luria D., Cheng S. H., Ng M., Leung Y., Kappelmayer J., Kiss F., Izraeli S., Stark B., Schrappe M., Trka J., Starý J., and Hrušák O. (2010) Detection of Residual B Precursor Lymphoblastic Leukemia by Uniform Gating Flow Cytometry. Pediatr. Blood Cancer 54, 62–70 PubMed
Stary J., Jabali Y., Trka J., Hrusak O., Gajdos P., Hrstkova H., Sterba J., Blazek B., Hak J., Prochazkova D., Cerna Z., Smisek P., Sedlacek P., Vavra V., Mihal V., and Hrodek O. (2010) Long-term results of treatment of childhood acute lymphoblastic leukemia in the Czech Republic. Leukemia 24, 425–428 PubMed
Vaskova M., Kovac M., Volna P., Angelisova P., Mejstrikova E., Zuna J., Brdicka T., and Hrusak O. (2011) High expression of cytoskeletal protein drebrin in TEL/AML1pos B-cell precursor acute lymphoblastic leukemia identified by a novel monoclonal antibody. Leuk. Res. 35, 1111–1113 PubMed
Weerkamp F., Dekking E., Ng Y. Y., van der Velden V. H., Wai H., Böttcher S., Brüggemann M., van der Sluijs A. J., Koning A., Boeckx N., Van Poecke N., Lucio P., Mendonça A., Sedek L., Szczepański T., Kalina T., Kovac M., Hoogeveen P. G., Flores-Montero J., Orfao A., Macintyre E., Lhermitte L., Chen R., Brouwer-De Cock K. a J., van der Linden A., Noordijk A. L., Comans-Bitter W. M., Staal F. J. T., and van Dongen J. J. M. (2009) Flow cytometric immunobead assay for the detection of BCR-ABL fusion proteins in leukemia patients. Leukemia 23, 1106–1117 PubMed
Dekking E., van der Velden V. H., Böttcher S., Brüggemann M., Sonneveld E., Koning-Goedheer A., Boeckx N., Lucio P., Sedek L., Szczepański T., Kalina T., Kovac M., Evans P., Hoogeveen P. G., Flores-Montero J., Orfao A., Comans-Bitter W. M., Staal F. J. T., and van Dongen J. J. M. (2010) Detection of fusion genes at the protein level in leukemia patients via the flow cytometric immunobead assay. Best Pract. Res. Clin. Haematol. 23, 333–345 PubMed
Bustin S., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W., Shipley G. L., Vandesompele J., and Wittwer C. T. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 PubMed
Ruijter J. M., Ramakers C., Hoogaars W. M., Karlen Y., Bakker O., van den Hoff M. J., and Moorman A. F. (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, e45. PubMed PMC
Andersen C. L., Jensen J. L., and Ørntoft T. F. (2004) Normalization of real-time quantitative reverse transcription-PCR data : A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 PubMed
Constantine W., and Percival D. (2011) wmtsa - Wavelet methods for time series analysis, R package version 1.1–1
Chvatal V. (1979) A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235
Pollard A. K. S., Gilbert H. N., Ge Y., Taylor S., and Dudoit S. (2014) Resampling-based multiple hypothesis testing. R package multtest, version 2.18.0
Pajic T., Cernelc P., Sesek Briski A., Lejko-Zupanc T., and Malesic I. (2009) Glutamate dehydrogenase activity in lymphocytes of B-cell chronic lymphocytic leukaemia patients. Clin. Biochem. 42, 1677–1684 PubMed
Cholez E., Debuysscher V., Bourgeais J., Boudot C., Leprince J., Tron F., Brassart B., Regnier A., Bissac E., Pecnard E., Gouilleux F., Lassoued K., and Gouilleux-Gruart V. (2012) Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells. Leukemia 26, 2390–2397 PubMed
Kelly J. A., Spolski R., Kovanen P. E., Suzuki T., Bollenbacher J., Pise-Masison C. a, Radonovich M. F., Lee S., Jenkins N. A., Copeland N. G., Morse H. C., and Leonard W. J. (2003) Stat5 synergizes with T cell receptor/antigen stimulation in the development of lymphoblastic lymphoma. J. Exp. Med. 198, 79–89 PubMed PMC
Tijchon E., Havinga J., van Leeuwen F. N., and Scheijen B. (2013) B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 27, 541–552 PubMed
Liang D. C., Shih L. Y., Huang C. F., Hung I. J., Yang C. P., Liu H. C., Jaing T -H., Wang L. Y., and Chang W. H. (2005) CEBPalpha mutations in childhood acute myeloid leukemia. Leukemia 19, 410–414 PubMed
Zou D., Yang X., Tan Y., Wang P., Zhu X., Yang W., Jia X., Zhang J., and Wang K. (2012) Regulation of the hematopoietic cell kinase (HCK) by PML/RARα and PU.1 in acute promyelocytic leukemia. Leuk. Res. 36, 219–223 PubMed
Carnevale J., Ross L., Puissant A., Banerji V., Stone R. M., DeAngelo D. J., Ross K. N., and Stegmaier K. (2013) SYK regulates mTOR signaling in AML. Leukemia 27, 2118–2128 PubMed PMC
McNamara S., Nichol J. N., Wang H., and Miller W. H. Jr. (2010) Targeting PKC delta-mediated topoisomerase II beta overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia 24, 729–739 PubMed
Proust R., Bertoglio J., and Gesbert F. (2012) The adaptor protein SAP directly associates with CD3ζ chain and regulates T cell receptor signaling. PLoS ONE 7, e43200. PubMed PMC
Svojgr K., Burjanivova T., Vaskova M., Kalina T., Stary J., Trka J., and Zuna J. (2009) Adaptor molecules expression in normal lymphopoiesis and in childhood leukemia. Immunol. Lett. 122, 185–192 PubMed
Holleman A., den Boer M. L., Cheok M. H., Kazemier K. M., Pei D., Downing J. R., Janka-Schaub G. E., Göbel U., Graubner U. B., Pui C. H., Evans W. E., and Pieters R. (2006) Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood 108, 1984–1990 PubMed PMC
Polgarova K., Vaskova M., Fronkova E., Slamova L., Kalina T., Mejstrikova E., Dobiasova A., and Hrusak O. (2015) Quantitative expression of regulatory and differentiation-related genes in the key steps of human hematopoiesis: The LeukoStage Database. Differentiation December 7, pii: S0301–4681(15)00072–9 [Epub ahead of print] PubMed
Adachi M., and Imai K. (2002) The proapoptotic BH3-only protein BAD transduces cell death signals independently of its interaction with Bcl-2. Cell Death Differ. 9, 1240–1247 PubMed
Tian Q., Stepaniants S. B., Mao M., Weng L., Feetham M. C., Doyle M. J., Yi E. C., Dai H., Thorsson V., Eng J., Goodlett D., Berger J. P., Gunter B., Linseley P. S., Stoughton R. B., Aebersold R., Collins S. J., Hanlon W. A., and Hood L. E. (2004) Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol. Cell. Proteomics 3, 960–969 PubMed
Tibes R., Qiu Y., Lu Y., Hennessy B., Andreeff M., Mills G. B., and Kornblau S. M. (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther. 5, 2512–2521 PubMed
Belov L., Huang P., Chrisp J. S., Mulligan S. P., and Christopherson R. I. (2005) Screening microarrays of novel monoclonal antibodies for binding to T-, B- and myeloid leukaemia cells. J. Immunol. Methods 305, 10–19 PubMed
Belov L., de la Vega O., dos Remedios C. G., Mulligan S. P., and Christopherson R. I. (2001) Immunophenotyping of Leukemias Using a Cluster of Differentiation Antibody Microarray. Cancer Res. 61, 4483–4489 PubMed
Khan S. S., Smith M. S., Reda D., Suffredini A. F., and McCoy J. P. Jr. (2004) Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B. Clin. Cytom. 61, 35–39 PubMed
Nolan J. P., and Mandy F. (2006) Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry 69, 318–325 PubMed PMC
Holm A., Wu W., and Lund-Johansen F. (2012) Antibody-array analysis of labelled proteomes: how can we control specificity? N. Biotechnol. 29, 578–585 PubMed
Dimitriadis G. J. (1979) Effect of Detergents on Antibody-Antigen Interaction. Anal. Biochem. 98, 445–451 PubMed
Häggmark A., Neiman M., Drobin K., Zwahlen M., Uhlén M., Nilsson P., and Schwenk J. M. (2012) Classification of protein profiles from antibody microarrays using heat and detergent treatment. N. Biotechnol. 29, 564–570 PubMed
Hanukoglu I. (1990) Elimination of non-specific binding in Western blots from non-reducing gels. J. Biochem. Biophys. Methods 21, 65–68 PubMed
Mosquera-Caro M., Helman P., and Veroff R. (2003) Identification, validation and cloning of a novel gene (OPAL1) and associated genes highly predictive of outcome in pediatric acute lymphoblastic leukemia using gene expression profiling [abstract]. Blood 102, 4a
Zhang Y., Lu J., van den Berghe J., and Lee S. H. (2002) Increased incidence of spontaneous apoptosis in the bone marrow of hyperdiploid childhood acute lymphoblastic leukemia. Exp. Hematol. 30, 333–339 PubMed
Kersey J. H. (1997) Fifty years of studies of the biology and therapy of childhood leukemia. Blood 90, 4243–4251 PubMed
Dekking E. H., van der Velden V. H. J., Varro R., Wai H., Böttcher S., Kneba M., Sonneveld E., Koning A., Boeckx N., Van Poecke N., Lucio P., Mendonça A., Sedek L., Szczepański T., Kalina T., Kanderová V., Hoogeveen P., Flores-Montero J., Chillón M. C., Orfao A., Almeida J., Evans P., Cullen M., Noordijk a L., Vermeulen P. M., de Man M. T., Dixon E. P., Comans-Bitter W. M., and van Dongen J. J. M. (2012) Flow cytometric immunobead assay for fast and easy detection of PML-RARA fusion proteins for the diagnosis of acute promyelocytic leukemia. Leukemia 26, 1976–1985 PubMed PMC
Bodzon-Kulakowska A., Bierczynska-Krzysik A., Dylag T., Drabik A., Suder P., Noga M., Jarzebinska J., and Silberring J. (2007) Methods for samples preparation in proteomic research. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 849, 1–31 PubMed
Barila D., Rufini A., Condo I., Ventura N., Dorey K., Superti-Furga G., and Testi R. (2003) Caspase-Dependent Cleavage of c-Abl Contributes to Apoptosis. Mol. Cell. Biol. 23, 2790–2799 PubMed PMC
Stoehr G., Schaab C., Graumann J., and Mann M. (2013) A SILAC-based approach identifies substrates of caspase-dependent cleavage upon TRAIL-induced apoptosis. Mol. Cell. Proteomics 12, 1436–1450 PubMed PMC
Ruan W., and Lai M. (2007) Actin, a reliable marker of internal control? Clin. Chim. Acta 385, 1–5 PubMed
Dittmer A., and Dittmer J. (2006) Beta-actin is not a reliable loading control in Western blot analysis. Electrophoresis 27, 2844–2845 PubMed
Hennessy B. T., Lu Y., Gonzalez-Angulo A. M., Carey M. S., Myhre S., Ju Z., Davies M. A., Liu W., Coombes K., Meric-Bernstam F., Bedrosian I., McGahren M., Agarwal R., Zhang F., Overgaard J., Alsner J., Neve R. M., Kuo W. L., Gray J. W., Borresen-Dale A. L., Mills G. B. (2010) A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in nonmicrodissected human breast cancers. Clin. Proteomics 6, 129–151 PubMed PMC