WBP1L regulates hematopoietic stem cell function and T cell development

. 2024 ; 15 () : 1421512. [epub] 20241101

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39555063

WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which was shown to correlate with ETV6-RUNX1 translocation and favorable prognosis in childhood leukemia. It has a broad expression pattern in hematopoietic and non-hematopoietic cells. Our previous work described WBP1L as a regulator of CXCR4 signaling and hematopoiesis. Here, we show that hematopoiesis in the mice with Wbp1l germline deletion is dysregulated, already at the level of hematopoietic stem cells and early progenitors. We further demonstrate that thymi of WBP1L-deficient mice are significantly enlarged and contain increased numbers of thymocytes of all subsets. This can potentially be explained by increased generation of multipotent progenitors 4 (MPP4) in the bone marrow, from which the thymus-seeding progenitors are derived. We also observed increases in multiple cell types in the blood. In addition, we show that WBP1L regulates hematopoietic stem cell functionality and leukocyte progenitor proliferation and gene expression during hematopoietic stem and progenitor cell transplantation, which contribute to more efficient engraftment of WBP1L-deficient cells. WBP1L thus emerges as a regulator of hematopoietic stem and progenitor cell function, which controls leukocyte numbers at the steady state and after bone marrow transplantation.

Zobrazit více v PubMed

Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD, et al. . Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. (2015) 17:35–46. doi: 10.1016/j.stem.2015.05.003 PubMed DOI PMC

Cosgrove J, Hustin LSP, de Boer RJ, Perié L. Hematopoiesis in numbers. Trends Immunol. (2021) 42:1100–12. doi: 10.1016/j.it.2021.10.006 PubMed DOI

Chen ELY, Thompson PK, Zúñiga-Pflücker JC. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat Immunol. (2019) 20:1456–68. doi: 10.1038/s41590-019-0518-7 PubMed DOI PMC

Liu C, Lan Y, Liu B, Zhang H, Hu H. T cell development: old tales retold by single-cell RNA sequencing. Trends Immunol. (2021) 42:165–75. doi: 10.1016/j.it.2020.12.004 PubMed DOI

Saran N, Łyszkiewicz M, Pommerencke J, Witzlau K, Vakilzadeh R, Ballmaier M, et al. . Multiple extrathymic precursors contribute to T-cell development with different kinetics. Blood. (2010) 115:1137–44. doi: 10.1182/blood-2009-07-230821 PubMed DOI PMC

Sottoriva K, Pajcini KV. Notch signaling in the bone marrow lymphopoietic niche. Front Immunol. (2021) 12:723055. doi: 10.3389/fimmu.2021.723055 PubMed DOI PMC

Yu VW, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang YH, et al. . Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med. (2015) 212:759–74. doi: 10.1084/jem.20141843 PubMed DOI PMC

Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. (2021) 56:1848–60. doi: 10.1016/j.devcel.2021.05.018 PubMed DOI PMC

Borna S, Drobek A, Kralova J, Glatzova D, Splichalova I, Fabisik M, et al. . Transmembrane adaptor protein WBP1L regulates CXCR4 signalling and murine haematopoiesis. J Cell Mol Med. (2020) 24:1980–92. doi: 10.1111/jcmm.14895 PubMed DOI PMC

Carroll WL, Bhojwani D, Min DJ, Raetz E, Relling M, Davies S, et al. . Pediatric acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. (2003) 2003:102–31. doi: 10.1182/asheducation-2003.1.102 PubMed DOI

Holleman A, den Boer ML, Cheok MH, Kazemier KM, Pei D, Downing JR, et al. . Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood. (2006) 108:1984–90. doi: 10.1182/blood-2006-04-015990 PubMed DOI PMC

Kanderova V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. . High-resolution antibody array analysis of childhood acute leukemia cells. Mol Cell Proteomics. (2016) 15:1246–61. doi: 10.1074/mcp.M115.054593 PubMed DOI PMC

Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE, et al. . Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. (2010) 11:429–38. doi: 10.1016/S1470-2045(10)70066-8 PubMed DOI

Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience. (2023) 45:1889–98. doi: 10.1007/s11357-023-00742-4 PubMed DOI PMC

Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. (2017) 17:573–90. doi: 10.1038/nri.2017.53 PubMed DOI

Balabanian K, Brotin E, Biajoux V, Bouchet-Delbos L, Lainey E, Fenneteau O, et al. . Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood. (2012) 119:5722–30. doi: 10.1182/blood-2012-01-403378 PubMed DOI

Krueger A, Willenzon S, Lyszkiewicz M, Kremmer E, Förster R. CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood. (2010) 115:1906–12. doi: 10.1182/blood-2009-07-235721 PubMed DOI

Zlotoff DA, Sambandam A, Logan TD, Bell JJ, Schwarz BA, Bhandoola A. CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood. (2010) 115:1897–905. doi: 10.1182/blood-2009-08-237784 PubMed DOI PMC

Glimm H, Oh IH, Eaves CJ. Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood. (2000) 96:4185–93. doi: 10.1182/blood.V96.13.4185 PubMed DOI

Morcos MNF, Schoedel KB, Hoppe A, Behrendt R, Basak O, Clevers HC, et al. . SCA-1 expression level identifies quiescent hematopoietic stem and progenitor cells. Stem Cell Rep. (2017) 8:1472–8. doi: 10.1016/j.stemcr.2017.04.012 PubMed DOI PMC

Passegué E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med. (2005) 202:1599–611. doi: 10.1084/jem.20050967 PubMed DOI PMC

Säwén P, Lang S, Mandal P, Rossi DJ, Soneji S, Bryder D. Mitotic history reveals distinct stem cell populations and their contributions to hematopoiesis. Cell Rep. (2016) 14:2809–18. doi: 10.1016/j.celrep.2016.02.073 PubMed DOI PMC

Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, et al. . Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. (2015) 16:712–24. doi: 10.1016/j.stem.2015.04.004 PubMed DOI PMC

Grinenko T, Arndt K, Portz M, Mende N, Günther M, Cosgun KN, et al. . Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. J Exp Med. (2014) 211:209–15. doi: 10.1084/jem.20131115 PubMed DOI PMC

Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med. (2010) 207:1173–82. doi: 10.1084/jem.20091318 PubMed DOI PMC

Yokota T, Oritani K, Butz S, Kokame K, Kincade PW, Miyata T, et al. . The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice. Blood. (2009) 113:2914–23. doi: 10.1182/blood-2008-07-167106 PubMed DOI PMC

Gekas C, Graf T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood. (2013) 121:4463–72. doi: 10.1182/blood-2012-09-457929 PubMed DOI

Yokota T, Kouro T, Hirose J, Igarashi H, Garrett KP, Gregory SC, et al. . Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity. (2003) 19:365–75. doi: 10.1016/S1074-7613(03)00231-0 PubMed DOI

Renders S, Svendsen AF, Panten J, Rama N, Maryanovich M, Sommerkamp P, et al. . Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat Commun. (2021) 12:608. doi: 10.1038/s41467-020-20801-0 PubMed DOI PMC

Xu K, Wu Z, Renier N, Antipenko A, Tzvetkova-Robev D, Xu Y, et al. . Neural migration. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science. (2014) 344:1275–9. doi: 10.1126/science.1255149 PubMed DOI PMC

Pinho S, Marchand T, Yang E, Wei Q, Nerlov C, Frenette PS. Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev Cell. (2018) 44:634–41.e4. doi: 10.1016/j.devcel.2018.01.016 PubMed DOI PMC

Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity. (2019) 50:796–811. doi: 10.1016/j.immuni.2019.03.022 PubMed DOI

Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, et al. . Fundamental properties of unperturbed haematopoiesis from stem cells. vivo Nat. (2015) 518:542–6. doi: 10.1038/nature14242 PubMed DOI

Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. . Clonal dynamics of native haematopoiesis. Nature. (2014) 514:322–7. doi: 10.1038/nature13824 PubMed DOI PMC

Jordan CT, Astle CM, Zawadzki J, Mackarehtschian K, Lemischka IR, Harrison DE. Long-term repopulating abilities of enriched fetal liver stem cells measured by competitive repopulation. Exp Hematol. (1995) 23:1011–5. PubMed

Rebel VI, Miller CL, Eaves CJ, Lansdorp PM. The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood. (1996) 87:3500–7. doi: 10.1182/blood.V87.8.3500.bloodjournal8783500 PubMed DOI

Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, et al. . Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. (2013) 502:232–6. doi: 10.1038/nature12495 PubMed DOI

Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: Promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol. (2023) 214:115641. doi: 10.1016/j.bcp.2023.115641 PubMed DOI

Wang Y, Argiles-Castillo D, Kane EI, Zhou A, Spratt DE. HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance. J Cell Sci. (2020) 133:cs228072. doi: 10.1242/jcs.228072 PubMed DOI PMC

Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol. (2021) 21:162–76. doi: 10.1038/s41577-020-00426-6 PubMed DOI PMC

Revici R, Hosseini-Alghaderi S, Haslam F, Whiteford R, Baron M. E3 ubiquitin ligase regulators of notch receptor endocytosis: from flies to humans. Biomolecules. (2022) 12:224. doi: 10.3390/biom12020224 PubMed DOI PMC

Gao JL, Yim E, Siwicki M, Yang A, Liu Q, Azani A, et al. . Cxcr4-haploinsufficient bone marrow transplantation corrects leukopenia in an unconditioned WHIM syndrome model. J Clin Invest. (2018) 128:3312–8. doi: 10.1172/JCI120375 PubMed DOI PMC

McDermott DH, Gao JL, Liu Q, Siwicki M, Martens C, Jacobs P, et al. . Chromothriptic cure of WHIM syndrome. Cell. (2015) 160:686–99. doi: 10.1016/j.cell.2015.01.014 PubMed DOI PMC

Birling MC, Dierich A, Jacquot S, Hérault Y, Pavlovic G. Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis. (2012) 50:482–9. doi: 10.1002/dvg.20826 PubMed DOI

Grusanovic S, Danek P, Kuzmina M, Adamcova MK, Burocziova M, Mikyskova R, et al. . Chronic inflammation decreases HSC fitness by activating the druggable Jak/Stat3 signaling pathway. EMBO Rep. (2023) 24:e54729. doi: 10.15252/embr.202254729 PubMed DOI PMC

Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. (2009) 347:70–8. doi: 10.1016/j.jim.2009.06.008 PubMed DOI

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. . Fiji: an open-source platform for biological-image analysis. Nat Methods. (2012) 9:676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50. doi: 10.1073/pnas.0506580102 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace