Transmembrane adaptor protein WBP1L regulates CXCR4 signalling and murine haematopoiesis

. 2020 Jan ; 24 (2) : 1980-1992. [epub] 20191217

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31845480

Grantová podpora
G0400247 Medical Research Council - United Kingdom

WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6-RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non-haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4-family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l-deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.

Zobrazit více v PubMed

Mosquera‐Caro M, Helman P, Veroff R, et al. Identification, validation and cloning of a novel gene (OPAL1) and associated genes highly predictive of outcome in pediatric acute lymphoblastic leukemia using gene expression profiling [abstract]. Blood. 2003;102:4a.

Holleman A, den Boer ML, Cheok MH, et al. Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood. 2006;108:1984‐1990. PubMed PMC

Kanderova V, Kuzilkova D, Stuchly J, et al. High‐resolution antibody array analysis of childhood acute leukemia cells. Mol Cell Proteomics. 2016;15:1246‐1261. PubMed PMC

Neveu B, Spinella J‐F, Richer C, et al. CLIC5: a novel ETV6 target gene in childhood acute lymphoblastic leukemia. Haematologica. 2016;101:1534‐1543. PubMed PMC

Lopez RG, Carron C, Oury C, Gardellin P, Bernard O, Ghysdael J. TEL is a sequence‐specific transcriptional repressor. J Biol Chem. 1999;274:30132‐30138. PubMed

Chakrabarti SR, Nucifora G. The leukemia‐associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochem Biophys Res Commun. 1999;264:871‐877. PubMed

De Braekeleer E, Douet‐Guilbert N, Morel F, Le Bris MJ, Basinko A, De Braekeleer M. ETV6 fusion genes in hematological malignancies: a review. Leuk Res. 2012;36:945‐961. PubMed

Rasighaemi P, Ward AC. ETV6 and ETV7: Siblings in hematopoiesis and its disruption in disease. Crit Rev Oncol Hematol. 2017;116:106‐115. PubMed

Wang LC, Swat W, Fujiwara Y, et al. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 1998;12:2392‐2402. PubMed PMC

Hock H, Meade E, Medeiros S, et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 2004;18:2336‐2341. PubMed PMC

Pei J, Grishin NV. Unexpected diversity in Shisa‐like proteins suggests the importance of their roles as transmembrane adaptors. Cell Signal. 2012;24:758‐769. PubMed PMC

Draber P, Kupka S, Reichert M, et al. LUBAC‐recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 2015;13:2258‐2272. PubMed PMC

Kralova J, Glatzova D, Borna S, Brdicka T. Expression of fluorescent fusion proteins in murine bone marrow‐derived dendritic cells and macrophages. J Vis Exp. 2018;140:e58081 10.3791/58081 PubMed DOI

Lorenz S. Structural mechanisms of HECT‐type ubiquitin ligases. Biol Chem. 2018;399:127‐145. PubMed

Mund T, Pelham HRB. Control of the activity of WW‐HECT domain E3 ubiquitin ligases by NDFIP proteins. EMBO Rep. 2009;10:501‐507. PubMed PMC

Ayala F, Dewar R, Kieran M, Kalluri R. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia. 2009;23:2233‐2241. PubMed PMC

de Lourdes PA, Amarante MK, Guembarovski RL, de Oliveira CEC, Watanabe MAE. CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target. Cell Mol Life Sci. 2015;72:1715‐1723. PubMed PMC

Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70‐74. PubMed

Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol. 2009;16:20‐26. PubMed PMC

Balabanian K, Brotin E, Biajoux V, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood. 2012;119:5722‐5730. PubMed

Zhan T, Cao C, Li L, Gu N, Civin CI, Zhan X. MIM regulates the trafficking of bone marrow cells via modulating surface expression of CXCR4. Leukemia. 2016;30:1327‐1334. PubMed PMC

Yu D, Zhan XH, Zhao XF, et al. Mice deficient in MIM expression are predisposed to lymphomagenesis. Oncogene. 2012;31:3561‐3568. PubMed PMC

Heng TS, Painter MW. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008;9:1091‐1094. PubMed

McDermott DH, Gao JL, Liu Q, et al. Chromothriptic cure of WHIM syndrome. Cell. 2015;160:686‐699. PubMed PMC

Gao JL, Yim E, Siwicki M, et al. Cxcr4‐haploinsufficient bone marrow transplantation corrects leukopenia in an unconditioned WHIM syndrome model. J Clin Invest. 2018;128:3312‐3318. PubMed PMC

Sundaresh A, Williams O. Mechanism of ETV6‐RUNX1 Leukemia In: Groner Y, Ito Y, Liu P, Neil JC, Speck NA, van Wijnen A, eds. RUNX Proteins in Development and Cancer. Singapore: Springer Singapore; 2017:201‐216. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...