Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
20145275
PubMed Central
PMC2878790
DOI
10.3324/haematol.2009.014506
PII: haematol.2009.014506
Knihovny.cz E-zdroje
- MeSH
- akutní lymfatická leukemie diagnóza imunologie terapie MeSH
- akutní myeloidní leukemie diagnóza imunologie terapie MeSH
- diferenciální diagnóza MeSH
- dítě MeSH
- fenotyp * MeSH
- imunofenotypizace * metody MeSH
- kojenec MeSH
- leukemie diagnóza imunologie terapie MeSH
- lidé MeSH
- mladiství MeSH
- následné studie MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- prognóza MeSH
- receptory antigenů T-buněk imunologie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- receptory antigenů T-buněk MeSH
BACKGROUND: Mixed phenotype acute leukemia (MPAL) represents a diagnostic and therapeutic dilemma. The European Group for the Immunological Classification of Leukemias (EGIL) scoring system unambiguously defines MPAL expressing aberrant lineage markers. Discussions surrounding it have focused on scoring details, and information is limited regarding its biological, clinical and prognostic significance. The recent World Health Organization classification is simpler and could replace the EGIL scoring system after transformation into unambiguous guidelines. DESIGN AND METHODS: Simple immunophenotypic criteria were used to classify all cases of childhood acute leukemia in order to provide therapy directed against acute lymphoblastic leukemia or acute myeloid leukemia. Prognosis, genotype and immunoglobulin/T-cell receptor gene rearrangement status were analyzed. RESULTS: The incidences of MPAL were 28/582 and 4/107 for children treated with acute lymphoblastic leukemia and acute myeloid leukemia regimens, respectively. In immunophenotypic principal component analysis, MPAL treated as T-cell acute lymphoblastic leukemia clustered between cases of non-mixed T-cell acute lymphoblastic leukemia and acute myeloid leukemia, while other MPAL cases were included in the respective non-mixed B-cell progenitor acute lymphoblastic leukemia or acute myeloid leukemia clusters. Analogously, immunoglobulin/T-cell receptor gene rearrangements followed the expected pattern in patients treated as having acute myeloid leukemia (non-rearranged, 4/4) or as having B-cell progenitor acute lymphoblastic leukemia (rearranged, 20/20), but were missing in 3/5 analyzed cases of MPAL treated as having T-cell acute lymphobastic leukemia. In patients who received acute lymphoblastic leukemia treatment, the 5-year event-free survival of the MPAL cases was worse than that of the non-mixed cases (53+/-10% and 76+/-2% at 5 years, respectively, P=0.0075), with a more pronounced difference among B lineage cases. The small numbers of MPAL cases treated as T-cell acute lymphoblastic leukemia or as acute myeloid leukemia hampered separate statistics. We compared prognosis of all subsets with the prognosis of previously published cohorts. CONCLUSIONS: Simple immunophenotypic criteria are useful for therapy decisions in MPAL. In B lineage leukemia, MPAL confers poorer prognosis. However, our data do not justify a preferential use of current acute myeloid leukemia-based therapy in MPAL.
Zobrazit více v PubMed
Rubnitz JE, Onciu M, Pounds S, Shurtleff S, Cao X, Raimondi SC, et al. Acute mixed lineage leukemia in children: the experience of St. Jude Children's Research Hospital. Blood. 2009;113(21):5083–9. PubMed PMC
Weir EG, Ali Ansari-Lari M, Batista DA, Griffin CA, Fuller S, Smith BD, et al. Acute bilineal leukemia: a rare disease with poor outcome. Leukemia. 2007;21(11):2264–70. PubMed
Bierings M, Szczepanski T, van Wering ER, Willemse MJ, Langerak AW, Revesz T, et al. Two consecutive immunophenotypic switches in a child with immunogenotypically stable acute leukaemia. Br J Haematol. 2001;113(3):757–62. PubMed
Krawczuk-Rybak M, Zak J, Jaworowska B. A lineage switch from AML to ALL with persistent translocation t(4;11) in congenital leukemia. Med Pediatr Oncol. 2003;41(1):95–6. PubMed
Killick S, Matutes E, Powles RL, Hamblin M, Swansbury J, Treleaven JG, et al. Outcome of biphenotypic acute leukemia. Haematologica. 1999;84(8):699–706. PubMed
Matutes E, Morilla R, Farahat N, Carbonell F, Swansbury J, Dyer M, et al. Definition of acute biphenotypic leukemia. Haematologica. 1997;82(1):64–6. PubMed
Owaidah TM, Al Beihany A, Iqbal MA, Elkum N, Roberts GT. Cytogenetics, molecular and ultrastructural characteristics of biphenotypic acute leukemia identified by the EGIL scoring system. Leukemia. 2006;20(4):620–6. PubMed
Lo Coco F. Hybrid phenotypes and lineage promiscuity in acute leukemia. Haematologica. 1991;76(3):215–25. PubMed
Hrusak O, Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia. 2002;16(7):1233–58. PubMed
Mejstrikova E, Kalina T, Trka J, Stary J, Hrusak O. Correlation of CD33 with poorer prognosis in childhood ALL implicates a potential of anti-CD33 frontline therapy. Leukemia. 2005;19(6):1092–4. PubMed
Kalina T, Vaskova M, Mejstrikova E, Madzo J, Trka J, Stary J, et al. Myeloid antigens in childhood lymphoblastic leukemia: clinical data point to regulation of CD66c distinct from other myeloid antigens. BMC Cancer. 2005;5(1):38. PubMed PMC
Bene MC, Bernier M, Casasnovas RO, Castoldi G, Knapp W, Lanza F, et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL) Blood. 1998;92(2):596–9. PubMed
Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL) Leukemia. 1995;9(10):1783–6. PubMed
Campana D, Behm FG. Immunophenotyping of leukemia. J Immunol Methods. 2000;243(1–2):59–75. PubMed
Borowitz MJ, Chan JKC. T lymphoblastic leukemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Geneva: WHO Press; 2008. pp. 176–8.
Borowitz MJ, Chan JKC. B lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Geneva: WHO Press; 2008. pp. 171–5.
Borowitz MJ, Chan JKC. B lymphoblastic leukaemia/lymphoma, not otherwise specified. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Geneva: WHO Press; 2008. pp. 168–70.
Borowitz MJ, Béné M-C, Harris NL, Porwit A, Matutes E. Acute leukemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Geneva: WHO Press; 2008. pp. 150–1.
Szczepanski T, Beishuizen A, Pongers-Willemse MJ, Hahlen K, Van Wering ER, Wijkhuijs AJ, et al. Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia. 1999;13(2):196–205. PubMed
Wright S, Chucrallah A, Chong YY, Kantarjian H, Keating M, Albitar M. Acute lymphoblastic leukemia with myeloperoxidase activity. Am J Hematol. 1996;51(2):147–51. PubMed
Rytting ME, Kantarjian H, Albitar M. Acute lymphoblastic leukemia with Burkittlike morphologic features and high myeloperoxidase activity. Am J Clin Pathol. 2009;132(2):182–5. quiz 306. PubMed
Krejci O, Prouzova Z, Horvath O, Trka J, Hrusak O. Cutting edge: TCR delta gene is frequently rearranged in adult B lymphocytes. J Immunol. 2003;171(2):524–7. PubMed
Fronkova E, Krejci O, Kalina T, Horvath O, Trka J, Hrusak O. Lymphoid differentiation pathways can be traced by TCR delta rearrangements. J Immunol. 2005;175(4):2495–500. PubMed
Zuna J, Krejci O, Madzo J, Fronkova E, Sramkova L, Hrusak O, et al. TEL/AML1 and immunoreceptor gene rearrangements-which comes first? Leuk Res. 2005;29(6):633–9. PubMed
Boeckx N, Willemse MJ, Szczepanski T, van der Velden VH, Langerak AW, Vandekerckhove P, et al. Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia. 2002;16(3):368–75. PubMed
Szczepanski T, van der Velden VH, Raff T, Jacobs DC, van Wering ER, Bruggemann M, et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia. 2003;17(11):2149–56. PubMed
Paietta E, Ferrando AA, Neuberg D, Bennett JM, Racevskis J, Lazarus H, et al. Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood. 2004;104(2):558–60. PubMed
Van Vlierberghe P, Meijerink JP, Stam RW, van der Smissen W, van Wering ER, Beverloo HB, et al. Activating FLT3 mutations in CD4+/CD8- pediatric T-cell acute lymphoblastic leukemias. Blood. 2005;106 (13):4414–5. PubMed
Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, et al. Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol. 2003;4(6):533–9. PubMed
MacLeod RA, Nagel S, Drexler HG. BCL11B rearrangements probably target T-cell neoplasia rather than acute myelocytic leukemia. Cancer Genet Cytogenet. 2004;153(1):88–9. PubMed
Strehl S, Nebral K, Konig M, Harbott J, Strobl H, Ratei R, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res. 2008;14(4):977–83. PubMed
Nachman J. Apples and oranges: mixed lineage acute leukemia. Blood. 2009;113(21):5036. PubMed
Baruchel A, Cayuela JM, Ballerini P, Landman-Parker J, Cezard V, Firat H, et al. The majority of myeloid-antigen-positive (My+) childhood B-cell precursor acute lymphoblastic leukaemias express TEL-AML1 fusion transcripts. Br J Haematol. 1997;99(1):101–6. PubMed
Stams WA, Beverloo HB, den Boer ML, de Menezes RX, Stigter RL, van Drunen E, et al. Incidence of additional genetic changes in the TEL and AML1 genes in DCOG and COALL-treated t(12;21)-positive pediatric ALL, and their relation with drug sensitivity and clinical outcome. Leukemia. 2006;20(3):410–6. PubMed
Loh ML, Goldwasser MA, Silverman LB, Poon WM, Vattikuti S, Cardoso A, et al. Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95–01. Blood. 2006;107(11):4508–13. PubMed PMC
Xu XQ, Wang JM, Lu SQ, Chen L, Yang JM, Zhang WP, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94(7):919–27. PubMed PMC
Mejstrikova E, Fronkova E, Kalina T, Omelka M, Batinic D, Dubravcic K, et al. Detection of residual B precursor lymphoblastic leukemia by uniform gating flow cytometry. Pediatr Blood Cancer. 2010;54(1):62–70. PubMed
Behm FG. Immunophenotyping. In: Pui CH, editor. Childhood Leukemias. Cambridge: Cambridge University Press; 2006. pp. 150–209.
Hasle H. Myelodysplastic and myeloproliferative disorders in children. Curr Opin Pediatr. 2007;19(1):1–8. PubMed
Recent advances in the management of pediatric acute lymphoblastic leukemia
High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells