Distinct Communities of Poplar Endophytes on an Unpolluted and a Risk Element-Polluted Site and Their Plant Growth-Promoting Potential In Vitro
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
29127500
DOI
10.1007/s00248-017-1103-y
PII: 10.1007/s00248-017-1103-y
Knihovny.cz E-resources
- Keywords
- Endophytes, PGPB, Phytoremediation, Poplar, Risk elements, Sordariomycetes,
- MeSH
- Antioxidants metabolism MeSH
- Bacteria classification drug effects isolation & purification metabolism MeSH
- Biodegradation, Environmental MeSH
- Biodiversity MeSH
- Biomass MeSH
- Endophytes classification drug effects isolation & purification metabolism MeSH
- Phosphates metabolism MeSH
- Phylogeny MeSH
- Fungi classification drug effects isolation & purification metabolism MeSH
- Plant Roots microbiology MeSH
- Environmental Pollutants toxicity MeSH
- Plant Leaves microbiology MeSH
- Carbon-Carbon Lyases metabolism MeSH
- Microbiota drug effects physiology MeSH
- Populus microbiology MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Plant Growth Regulators metabolism MeSH
- Siderophores metabolism MeSH
- In Vitro Techniques MeSH
- Drug Tolerance MeSH
- Plant Development * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- 1-aminocyclopropane-1-carboxylate deaminase MeSH Browser
- Antioxidants MeSH
- Phosphates MeSH
- Environmental Pollutants MeSH
- Carbon-Carbon Lyases MeSH
- Soil MeSH
- Plant Growth Regulators MeSH
- Siderophores MeSH
Numerous studies demonstrated that endophytic microbes can promote plant growth and increase plant stress resistance. We aimed at isolating poplar endophytes able to increase their hosts' fitness both in nutrient-limited and polluted environments. To achieve this goal, endophytic bacteria and fungi were isolated from roots and leaves of hybrid poplars (Populus nigra × P. maximowiczii clone Max-4) on an unpolluted and a risk element-polluted site in the Czech Republic and subsequently screened by a number of in vitro tests. Bacterial communities at the unpolluted site were dominated by Gammaproteobacteria with Pseudomonas sp. as the prominent member of the class, followed by Bacilli with prevailing Bacillus sp., whereas Alphaproteobacteria, mostly Rhizobium sp., prevailed at the polluted site. The fungal endophytic community was dominated by Ascomycetes and highly distinct on both sites. Dothideomycetes, mostly Cladosporium, prevailed at the non-polluted site while unclassified Sordariomycetous fungi dominated at the polluted site. Species diversity of endophytes was higher at the unpolluted site. Many tested endophytic strains solubilized phosphate and produced siderophores, phytohormones, and antioxidants. Some strains also exhibited ACC-deaminase activity. Selected bacteria showed high tolerance and the ability to accumulate risk elements, making them promising candidates for use in inocula promoting biomass production and phytoremediation. Graphical Abstract ᅟ.
Institute of Botany ASCR Zámek 1 252 43 Průhonice Czech Republic
University of Chemistry and Technology Prague Technická 5 166 28 Praha 6 Czech Republic
See more in PubMed
New Phytol. 2012 Oct;196(2):520-34 PubMed
PLoS One. 2012;7(10):e47968 PubMed
Environ Sci Pollut Res Int. 2015 Dec;22(23):18801-13 PubMed
Biotechnol Adv. 2011 Mar-Apr;29(2):248-58 PubMed
Chemosphere. 2013 Oct;93(7):1333-44 PubMed
Proc Biol Sci. 2009 Jul 7;276(1666):2419-26 PubMed
J Microbiol Methods. 2007 Jul;70(1):127-31 PubMed
Microb Biotechnol. 2013 May;6(3):288-99 PubMed
New Phytol. 2015 Mar;205(4):1424-30 PubMed
Appl Environ Microbiol. 2009 Feb;75(3):748-57 PubMed
New Phytol. 2016 Jan;209(2):798-811 PubMed
J Appl Microbiol. 2010 Apr;108(4):1471-84 PubMed
Mycorrhiza. 2016 Oct;26(7):657-71 PubMed
Biofouling. 2016 Jul;32(6):657-69 PubMed
Lett Appl Microbiol. 2011 Aug;53(2):178-85 PubMed
Appl Microbiol Biotechnol. 2012 Oct;96(2):543-54 PubMed
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-6 PubMed
Sci Rep. 2016 Feb 25;6:22028 PubMed
Front Microbiol. 2016 Feb 12;7:150 PubMed
FEMS Microbiol Ecol. 2008 Feb;63(2):169-80 PubMed
Int J Syst Evol Microbiol. 2015 May;65(Pt 5):1525-30 PubMed
Mol Phylogenet Evol. 2012 Sep;64(3):500-12 PubMed
Biotechnol Adv. 1999 Oct;17(4-5):319-39 PubMed
Environ Pollut. 2006 Aug;142(3):409-17 PubMed
Mol Ecol. 2015 Jan;24(1):235-48 PubMed
Bioresour Technol. 2010 Jan;101(2):501-9 PubMed
Mycologia. 2006 Nov-Dec;98(6):1076-87 PubMed
Sci Total Environ. 2016 Nov 15;571:1230-40 PubMed
Chemosphere. 2014 Dec;117:538-44 PubMed
Int J Phytoremediation. 2002;4(2):101-15 PubMed
Int J Syst Evol Microbiol. 2003 Mar;53(Pt 2):607-16 PubMed
Environ Pollut. 2016 Sep;216:773-785 PubMed
Appl Environ Microbiol. 2011 Sep;77(17):5934-44 PubMed
FEMS Microbiol Ecol. 2016 Oct;92 (10 ): PubMed
J Hazard Mater. 2011 Nov 15;195:230-7 PubMed
N Biotechnol. 2013 Sep 25;30(6):685-94 PubMed
Mycol Res. 2009 May;113(5):645-54 PubMed
Mycorrhiza. 2010 Jun;20(5):315-24 PubMed
FEMS Microbiol Lett. 1999 Jan 1;170(1):265-70 PubMed
J Microbiol. 2012 Dec;50(6):910-5 PubMed
PLoS One. 2013 Oct 16;8(10):e76382 PubMed
Sci Total Environ. 2012 May 15;425:262-70 PubMed
PLoS One. 2013 Sep 24;8(9):e73132 PubMed
Mol Ecol. 1993 Apr;2(2):113-8 PubMed
3 Biotech. 2014 Apr;4(2):197-204 PubMed
Microb Ecol. 2017 Nov;74(4):795-809 PubMed
Appl Environ Microbiol. 2011 Oct;77(19):6858-66 PubMed
Microbiome. 2017 Feb 23;5(1):25 PubMed
Antonie Van Leeuwenhoek. 2007 Feb;91(2):105-13 PubMed
New Phytol. 2009 Jun;182(4):878-90 PubMed
Can J Microbiol. 2009 May;55(5):501-14 PubMed
Environ Microbiol. 2015 Jul;17(7):2379-92 PubMed
Int J Phytoremediation. 2011 Nov-Dec;13(10):1024-36 PubMed
Talanta. 2007 Jan 15;71(1):230-5 PubMed