Whole genome sequencing and characterization of Pantoea agglomerans DBM 3797, endophyte, isolated from fresh hop (Humulus lupulus L.)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
38389535
PubMed Central
PMC10882544
DOI
10.3389/fmicb.2024.1305338
Knihovny.cz E-resources
- Keywords
- Pantoea agglomerans, genome characterization, gluconic acid, hops endophyte, plant growth promotion,
- Publication type
- Journal Article MeSH
BACKGROUND: This paper brings new information about the genome and phenotypic characteristics of Pantoea agglomerans strain DBM 3797, isolated from fresh Czech hop (Humulus lupulus) in the Saaz hop-growing region. Although P. agglomerans strains are frequently isolated from different materials, there are not usually thoroughly characterized even if they have versatile metabolism and those isolated from plants may have a considerable potential for application in agriculture as a support culture for plant growth. METHODS: P. agglomerans DBM 3797 was cultured under aerobic and anaerobic conditions, its metabolites were analyzed by HPLC and it was tested for plant growth promotion abilities, such as phosphate solubilization, siderophore and indol-3-acetic acid productions. In addition, genomic DNA was extracted, sequenced and de novo assembly was performed. Further, genome annotation, pan-genome analysis and selected genome analyses, such as CRISPR arrays detection, antibiotic resistance and secondary metabolite genes identification were carried out. RESULTS AND DISCUSSION: The typical appearance characteristics of the strain include the formation of symplasmata in submerged liquid culture and the formation of pale yellow colonies on agar. The genetic information of the strain (in total 4.8 Mb) is divided between a chromosome and two plasmids. The strain lacks any CRISPR-Cas system but is equipped with four restriction-modification systems. The phenotypic analysis focused on growth under both aerobic and anaerobic conditions, as well as traits associated with plant growth promotion. At both levels (genomic and phenotypic), the production of siderophores, indoleacetic acid-derived growth promoters, gluconic acid, and enzyme activities related to the degradation of complex organic compounds were found. Extracellular gluconic acid production under aerobic conditions (up to 8 g/l) is probably the result of glucose oxidation by the membrane-bound pyrroloquinoline quinone-dependent enzyme glucose dehydrogenase. The strain has a number of properties potentially beneficial to the hop plant and its closest relatives include the strains also isolated from the aerial parts of plants, yet its safety profile needs to be addressed in follow-up research.
Department of Biotechnology University of Chemistry and Technology Prague Prague Czechia
Department of Informatics Ludwig Maximilians Universität München Munich Germany
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czechia
See more in PubMed
Achouak W., Heulin T., Villemin G. J., Balandreau J. (1994). Root colonization by symplasmata-forming Enterobacter agglomerans. FEMS Microbiol. Ecol. 13, 287–294. 10.1111/j.1574-6941.1994.tb00075.x DOI
Alcock B. P., Raphenya A. R., Lau T. T. Y., Tsang K. K., Bouchard M., Edalatmand A., et al. . (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525. 10.1093/nar/gkz935 PubMed DOI PMC
Alikhan N. F., Petty N. K., Ben Zakour N. L., Beatson S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genom. 12:402. 10.1186/1471-2164-12-402 PubMed DOI PMC
Allen M. E., Piefer A. J., Cole S. N., Werner J. J., Benziger P. T., Grieneisen L., et al. . (2019). Characterization of microbial communities populating the inflorescences of Humulus lupulus L. J. Am. Soc. Brew. Chem. 77, 243–250. 10.1080/03610470.2019.1667739 DOI
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Andreeva I. G., Golubeva L. I., Kuvaeva T. M., Gak E. R., Katashkina J. I., Mashko S. V. (2011). Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis. FEMS Microbiol. Lett. 318, 55–60. 10.1111/j.1574-6968.2011.02240.x PubMed DOI
Arndt D., Grant J., Marcu A., Sajed T., Pon A., Liang Y., et al. . (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21. 10.1093/nar/gkw387 PubMed DOI PMC
Biswas A., Staals R. H. J., Morales S. E., Fineran P. C., Brown C. M. (2016). CRISPRDetect: a flexible algorithm to define CRISPR arrays' BMC Genom. 17:356. 10.1186/s12864-016-2627-0 PubMed DOI PMC
Blin K., Shaw S., Augustijn H. E., Reitz Z. L., Biermann F., Alanjary M., et al. . (2023). antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucl. Acids Res. 51. W46–W50. 10.1093/nar/gkad344 PubMed DOI PMC
Bocquet L., Sahpaz S., Rivière C. (2018). “An overview of the antimicrobial properties of hop,” in Natural Antimicrobial Agents. Sustainable Development and Biodiversity, Vol 19, eds J. M. Mérillon, and C. Riviere (Cham: Springer; ).
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Cantalapiedra C. P., Hernández-Plaza A., Letunic I., Bork P., Huerta-Cepas J. (2021). EggNOG-Mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829. 10.1093/molbev/msab293 PubMed DOI PMC
Carver T., Harris S. H., Berriman M., Parkhill J., McQuillan J. A. (2012). Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469. 10.1093/bioinformatics/btr703 PubMed DOI PMC
Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J. (2009). DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25, 119–120. 10.1093/bioinformatics/btn578 PubMed DOI PMC
Chaudhari N. M., Gupta V. K., Dutta C. (2016). BPGA-an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6:24373. 10.1038/srep24373 PubMed DOI PMC
De Maayer P., Chan W. Y., Blom J., Venter S. N., Duffy B., Smits T. H. M., et al. . (2012). The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genom. 13:625. 10.1186/1471-2164-13-625 PubMed DOI PMC
Dutkiewicz J., Mackiewicz B., Lemieszek M. K., Golec M., Milanowski J. (2016). Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann. Agric. Environ. Med. 23, 206–222. 10.5604/12321966.1203879 PubMed DOI
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
Elhaissoufi W., Ibnyasser A., Haddine M., Zeroual Y., Ghani R., Barakat A., et al. . (2023). Screening of potential phosphate solubilizing bacteria inoculants should consider the contrast in phosphorus bio-solubilization rate along with plant growth promotion and phosphorus use efficiency. J. Appl. Microbiol. 134:lxac077. 10.1093/jambio/lxac077 PubMed DOI
Ewels P., Magnusson. M, Lundin. S, Käller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC
Fahle A., Bereswill S., Heimesaat M. M. (2022). Antibacterial effects of biologically active ingredients in hop provide promising options to fight infections by pathogens including multi-drug resistant bacteria. Eur. J. Microbiol. Immunol. 12, 22–30. 10.1556/1886.2022.00006 PubMed DOI PMC
Gilardi G. L., Bottone E. (1971). Erwinia and yellow-pigmented Enterobacter isolates from human sources. Antonie Van Leeuwenh. 37, 529–535. 10.1007/BF02218523 PubMed DOI
Gilbert S., Xu J., Acosta K., Poulev A., Lebeis S., Lam E. (2018). Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 6:265. 10.3389/fchem.2018.00265 PubMed DOI PMC
Gómez W., Buela L., Castro L. T., Chaparro V., Ball M. M., Yarzábal L. A. (2010). Evidence for gluconic acid production by Enterobacter intermedium as an efficient strategy to avoid protozoan grazing. Soil Biol. Biochem. 42, 822–830. 10.1016/j.soilbio.2010.01.019 DOI
Goryluk-Salmonovicz A., Piórek M., Rekosz-Burlaga H., Studnicki M., Blasczyk M. (2016). Endophytic detection in selected European herbal plants. Polish J. Microbiol. 65, 369–375. 10.5604/17331331.1215617 PubMed DOI
Guevarra R. B., Magez S., Peeters E., Chung M. S., Kim K. H., Radwanska M. (2021). Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen. PLoS ONE 16:e0239792. 10.1371/journal.pone.0239792 PubMed DOI PMC
Hawar S. N. (2022). Extracellular enzyme of endophytic fungi isolated from Ziziphus spina leaves as medicinal plant. Int. J. Biomater. 2022:2135927. 10.1155/2022/2135927 PubMed DOI PMC
Huang J., Zhu Y., Han M. L., Li M., Song J., Velkov T., et al. . (2018). Comparative analysis of phosphoethanolamine transferases involved in polymyxin resistance across 10 clinically relevant Gram-negative bacteria. Int. J. Antimicrob. Agents 51, 586–593. 10.1016/j.ijantimicag.2017.12.016 PubMed DOI PMC
Jaskula B., Kafarski P., Aerts G., De Cooman L. (2008). A kinetic study on the isomerization of hop alpha acids. J. Agric. Food Chem. 56, 6408–6415. 10.1021/jf8004965 PubMed DOI
Jia M., Yu X., Jiang J., Li Z., Feng Y. (2017). The cytidine repressor participates in the regulatory pathway of indole in Pantoea agglomerans. Res. Microbiol. 7, 636–643. 10.1016/j.resmic.2017.04.006 PubMed DOI
Jiang J., Wu S., Wang J., Feng Y. (2015). AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic Microbiol. 55, 607–616. 10.1002/jobm.201400472 PubMed DOI
Kim I. J., Pusey P. L., Zhao Y., Korban S. S., Choi H., Kim K. K. (2012). Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J. Controll. Release 161, 109–115. 10.1016/j.jconrel.2012.03.028 PubMed DOI
Koçak O. F. (2019). Identification of Streptomyces strains isolated from Humulus lupulus rhizosphere and determination of plant growth promotion potential of selected strains. Turk. J. Biol. 43, 391–403. 10.3906/biy-1906-37 PubMed DOI PMC
Kolek J., Patakova P., Junkova P., Krofta K., Hynek R., Dostalek P. (2021). Isolation and identification of Pantoea agglomerans from the inflated bag with dried hop pellets stored under a modified atmosphere. J. Appl. Microbiol. 131, 281–287. 10.1111/jam.14970 PubMed DOI
Kumar P., Rani S., Dahiya P., Kumar A., Dang A. S., Pooja S. (2022). Whole genome analysis for plant growth promotion profiling of Pantoea agglomerans CPHN2, a non-rhizobial nodule endophyte. Front. Microbiol. 13:998821. 10.3389/fmicb.2022.998821 PubMed DOI PMC
Lanfear R., Schalamun M., Kainer D., Wang W., Schwessinger B. (2019). MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics 35, 523–525. 10.1093/bioinformatics/bty654 PubMed DOI PMC
Li H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. 10.1093/bioinformatics/bty191 PubMed DOI PMC
Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennel,l T., Ruan J., Homer N., et al. . (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Li S. Y., Ng I. S., Chen P. T., Chiang C. J., Chao Y. P. (2018). Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnol. Biofuels 11:256. 10.1186/s13068-018-1234-5 PubMed DOI PMC
Liang J. L., Liu J., Jia P., Yang T. T., Zeng Q. W., et al. . (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613. 10.1038/s41396-020-0632-4 PubMed DOI PMC
Liu B., Zheng D., Jin Q., Chen L., Yang J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucl. Acids Res. 47, D687–D692. 10.1093/nar/gky1080 PubMed DOI PMC
Luo H., Quan C.-L., Peng C., Gao F. (2019). Recent development of Ori-Finder system and DoriC database for microbial replication origins. Brief. Bioinform. 20, 1114–1124. 10.1093/bib/bbx174 PubMed DOI
Luziatelli F., Ficca A. G., Bonini P., Muleo R., Gatti L., Meneghin.i M., Tronati M., Melini F., Ruzzi M. (2020b). Genetic and metabolomic perspective on the production of indole-3-acetic acid by Pantoea agglomerans and use of their metabolites as biostimulants in plant nurseries. Front. Microbiol. 11:1475. 10.3389/fmicb.2020.01475 PubMed DOI PMC
Luziatelli F., Ficca A. G., Cardarelli M., Melini F., Cavalieri A., Ruzzi M. (2020a). Genome sequencing of Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant growth-promotion and tolerance to heavy metals. Microorganisms 8:153. 10.3390/microorganisms8020153 PubMed DOI PMC
Luziatelli F., Ficca A. G., Melini F., Ruzzi M. (2019). Genome sequence of the plant growth-promoting rhizobacterium Pantoea agglomerans C1. Microbiol. Resour. Announ. 8, e00828–e00819. 10.1128/MRA.00828-19 PubMed DOI PMC
Ma Y., Li B., Zhang X., Wang C., Chen W. (2022). Production of gluconic acid and its derivatives by microbial fermentation: Process improvement based on integrated routes. Front. Bioeng. Biotechnol. 10:864787. 10.3389/fbioe.2022.864787 PubMed DOI PMC
Marchler-Bauer A., Bryant S. H. (2004). CD-search: protein domain annotations on the fly. Nucl. Acids Res. 32, W327–W331. 10.1093/nar/gkh454 PubMed DOI PMC
Micci A., Zhang Q., Chang X., Kingsley K., Park L., Chiaranunt P., et al. . (2022). Histochemical evidence for nitrogen-transfer endosymbiosis in non-photosynthetic cells of leaves and inflorescence bracts of angiosperms. Biology 11:876. 10.3390/biology11060876 PubMed DOI PMC
Milligan S. R., Kalita J. C., Pocock V., Van de Kauter V., Stevens J. F., Deinzer M. L., et al. . (2000). The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J. Clin. Endocrinol. Metab. 85, 4912–4915. 10.1210/jcem.85.12.7168 PubMed DOI
Miranda C. L., Stevens J. F., Helmrich A., Henderson M. C., Rodriguez R. J., Yang Y. H., et al. . (1999). Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 37, 271–285. 10.1016/S.0278-6915(99)00019-8 PubMed DOI
Nikel P. I., Chavarría M., Fuhrer T., Sauer U., de Lorenzo V. (2015). Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 290, 25920–25932. 10.1074/jbc.M115.687749 PubMed DOI PMC
Noori F., Etesami H., Noori S., Forouzan E., Jouzani G. S., Malboobi M. A. (2021). Whole genome sequence of Pantoea agglomerans ANP8, a salinity and drought stress–resistant bacterium isolated from alfalfa (Medicago sativa L.) root nodules. Biotechnol. Rep. 29:e00600. 10.1016/j.btre.2021.e00600 PubMed DOI PMC
O'Leary N. A., Wright M. W., Brister J. R., Ciufo S., Haddad D., McVeigh R., et al. . (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucl. Acids Res. 44, D733–745. 10.1093/nar/gkv1189 PubMed DOI PMC
Parker J. K., Davies B. W. (2022). Microcins reveal natural mechanisms of bacterial manipulation to inform therapeutic development. Microbiology 168:001175. 10.1099/mic.0.001175 PubMed DOI PMC
Pronk J. T., Levering P. R., Olijve W., van Dijken J. P. (1989). Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Microb. Technol. 11, 160–164. 10.1016/0141-0229(89)90075-6 DOI
Ramachandran S., Fontanille P., Pandey A., Larroche C. (2006). Gluconic acid: properties, applications and microbial production. Food Technol. Biotechnol. 44, 185–195. Available online at: https://hrcak.srce.hr/file/161891
Rawat P., Das S., Shankhdhar D., Shankhdar S. C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 21, 49–68. 10.1007/s42729-020-00342-7 DOI
Rezzonico F., Smits T. H., Montesinos E., Frey J. E., Duffy B. (2009). Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 9:204. 10.1186/1471-2180-9-204 PubMed DOI PMC
Roberts R. J., Vincze T., Posfai J., Macelis D. (2023). REBASE: a database for DNA restriction and modification: enzymes, genes and genomes. Nucl. Acids Res. 51, D629–D630. 10.1093/nar/gkac975 PubMed DOI PMC
Schmidt C. S., Lovecka P., Mrnka L., Vychodilova A., Strejcek M., Fenclova M., et al. . (2018). Distinct communities of poplar endophytes on an unpolluted and a risk element-polluted site and their plant growth-promoting potential in vitro. Microb. Ecol. 75, 955–969. 10.1007/s00248-017-1103-y PubMed DOI
Sedlar K., Vasylkivska M., Musilova J., Branska B., Provaznik I., Patakova P. (2021). Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium diolis DSM 15410. Genomics 113, 1109–1119. 10.1016/j.ygeno.2020.11.007 PubMed DOI
Seneviratne G., Weerasekara M. L. M. A.W., Seneviratne C., Zavahir J. S., Kcskés M. L., Kennedy I. R. (2010). “Importance of biofilm formation in plant growth promoting rhizobacterial action,” in Plant Growth and Health Promoting Bacteria, ed D. K. Maheshawari (Berlin: Springer-Verlag; ), 81–95.
Sevigny J. L., Lloyd B., McComish C., Ramsey A., Koziol L. (2019). Whole-genome sequences of Pantoea agglomerans BL3, Pseudomonas fluorescens BL, and Pseudomonas stutzeri CM14, isolated from Hops (Humulus lupulus). Microbiol. Resour. Announ. 8, e00545–e00519. 10.1128/MRA.00545-19 PubMed DOI PMC
Sezonov G., Joseleau-Petit D., D'Ari R. (2007). Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol. 189, 8746–8749. 10.1128/JB.01368-07 PubMed DOI PMC
Shariati J. V, Malboobi M. A., Tabrizi Z., Tevakol E., Owlia P., et al. . (2017). Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5. Sci. Rep. 7:15610. 10.1038/s41598-017-15820-9 PubMed DOI PMC
Sleha R., Radochova V., Malis J., Mikyska A., Houska M., Krofta K., et al. . (2021). Strong antimicrobial and healing effects of Beta-Acids from Hops in methicillin-resistant Staphylococcus aureus-infected external wounds in vivo. Antibiotics 10:708. 10.3390/antibiotics10060708 PubMed DOI PMC
Sorek R., Lawrence C. M., Wiedenheft B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82, 237–266. 10.1146/annurev-biochem-072911-172315 PubMed DOI
Soutar C. D., Stavrinides J. (2019). Molecular validation of clinical Pantoea isolates identified by MALDI-TOF. PLoS ONE 14:e0224731. 10.1371/journal.pone.0224731 PubMed DOI PMC
Stranska M., Lovecka P., Vrchotova B., Uttl L., Bechynska K., Behner A., et al. . (2021). Bacterial endophytes from Vitis vinifera L – Metabolomics characterization of plant-endophyte crosstalk. Chem. Biodivers. 18:e2100516. 10.1002/cbdv.202100516 PubMed DOI
Sulja A., Pothier J. F., Blom J., Moretti C., Buonario R., Rezzonico F., et al. . (2022). Comparative genomics to examine the endophytic potential of Pantoea agglomerans DAPP-PG 734. BMC Genom. 23:742. 10.1186/s12864-022-08966-y PubMed DOI PMC
Taboada B., Estrada K., Ciria R., Merino E. (2018). Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 118–120. 10.1093/bioinformatics/bty496 PubMed DOI PMC
Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., et al. . (2016). NCBI prokaryotic genome annotation pipeline. Nucl. Acids Res. 44, 6614–6624. 10.1093/nar/gkw569 PubMed DOI PMC
Tecon R., Leveau J. (2016). Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity. Sci. Rep. 6:31914. 10.1038/srep31914 PubMed DOI PMC
Torrents E. (2014). Ribonucleotide reductases: essential enzymes for bacterial life. Front. Cell. Infect. Microbiol. 4:52. 10.3389/fcimb.2014.00052 PubMed DOI PMC
Vanneste J. L., Cornish D. A., Yu J., Voyle M. D. (2002). The peptide antibiotic produced by Pantoea agglomerans EH252 is a microcin. Acta Hortic. 590, 285–290. 10.17660/ActaHortic.2002.590.42 DOI
Vaser R., Sović I., Nagarajan N., Šikić M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746. 10.1101/gr.214270.116 PubMed DOI PMC
Walker B. J., Abeel T., Shea T., Priest M., Abouellie,l A., Sakthikumar S., et al. . (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC
Walterson A. M., Stavrinides J. (2015). Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968–984. 10.1093/femsre/fuv027 PubMed DOI
Wang J., Fung D. Y. C. (1996). Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit. Rev. Microbiol. 2, 101–138. 10.3109/10408419609106457 PubMed DOI
Yu X., Jiang J., Liang C., Zhang X., Wang J., Shen D., et al. . (2016). Indole affects the formation of multicellular aggregate structures in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol. 62, 31–37. 10.2323/jgam.62.31 PubMed DOI
Zhang S., Soltis D. E., Yang Y., Li D., Yi T. (2011). Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol. Phylogenet. Evol. 60, 21–28. 10.1016/j.ympev.2011.04.008 PubMed DOI
Zheng J., Xia Y., Liu Q., He X., Yu J., Feng Y. (2019). Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol. 65, 11–17. 10.2323/jgam.2018.03.002 PubMed DOI