• This record comes from PubMed

Whole genome sequencing and characterization of Pantoea agglomerans DBM 3797, endophyte, isolated from fresh hop (Humulus lupulus L.)

. 2024 ; 15 () : 1305338. [epub] 20240208

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

BACKGROUND: This paper brings new information about the genome and phenotypic characteristics of Pantoea agglomerans strain DBM 3797, isolated from fresh Czech hop (Humulus lupulus) in the Saaz hop-growing region. Although P. agglomerans strains are frequently isolated from different materials, there are not usually thoroughly characterized even if they have versatile metabolism and those isolated from plants may have a considerable potential for application in agriculture as a support culture for plant growth. METHODS: P. agglomerans DBM 3797 was cultured under aerobic and anaerobic conditions, its metabolites were analyzed by HPLC and it was tested for plant growth promotion abilities, such as phosphate solubilization, siderophore and indol-3-acetic acid productions. In addition, genomic DNA was extracted, sequenced and de novo assembly was performed. Further, genome annotation, pan-genome analysis and selected genome analyses, such as CRISPR arrays detection, antibiotic resistance and secondary metabolite genes identification were carried out. RESULTS AND DISCUSSION: The typical appearance characteristics of the strain include the formation of symplasmata in submerged liquid culture and the formation of pale yellow colonies on agar. The genetic information of the strain (in total 4.8 Mb) is divided between a chromosome and two plasmids. The strain lacks any CRISPR-Cas system but is equipped with four restriction-modification systems. The phenotypic analysis focused on growth under both aerobic and anaerobic conditions, as well as traits associated with plant growth promotion. At both levels (genomic and phenotypic), the production of siderophores, indoleacetic acid-derived growth promoters, gluconic acid, and enzyme activities related to the degradation of complex organic compounds were found. Extracellular gluconic acid production under aerobic conditions (up to 8 g/l) is probably the result of glucose oxidation by the membrane-bound pyrroloquinoline quinone-dependent enzyme glucose dehydrogenase. The strain has a number of properties potentially beneficial to the hop plant and its closest relatives include the strains also isolated from the aerial parts of plants, yet its safety profile needs to be addressed in follow-up research.

See more in PubMed

Achouak W., Heulin T., Villemin G. J., Balandreau J. (1994). Root colonization by symplasmata-forming Enterobacter agglomerans. FEMS Microbiol. Ecol. 13, 287–294. 10.1111/j.1574-6941.1994.tb00075.x DOI

Alcock B. P., Raphenya A. R., Lau T. T. Y., Tsang K. K., Bouchard M., Edalatmand A., et al. . (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525. 10.1093/nar/gkz935 PubMed DOI PMC

Alikhan N. F., Petty N. K., Ben Zakour N. L., Beatson S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genom. 12:402. 10.1186/1471-2164-12-402 PubMed DOI PMC

Allen M. E., Piefer A. J., Cole S. N., Werner J. J., Benziger P. T., Grieneisen L., et al. . (2019). Characterization of microbial communities populating the inflorescences of Humulus lupulus L. J. Am. Soc. Brew. Chem. 77, 243–250. 10.1080/03610470.2019.1667739 DOI

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Andreeva I. G., Golubeva L. I., Kuvaeva T. M., Gak E. R., Katashkina J. I., Mashko S. V. (2011). Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis. FEMS Microbiol. Lett. 318, 55–60. 10.1111/j.1574-6968.2011.02240.x PubMed DOI

Arndt D., Grant J., Marcu A., Sajed T., Pon A., Liang Y., et al. . (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21. 10.1093/nar/gkw387 PubMed DOI PMC

Biswas A., Staals R. H. J., Morales S. E., Fineran P. C., Brown C. M. (2016). CRISPRDetect: a flexible algorithm to define CRISPR arrays' BMC Genom. 17:356. 10.1186/s12864-016-2627-0 PubMed DOI PMC

Blin K., Shaw S., Augustijn H. E., Reitz Z. L., Biermann F., Alanjary M., et al. . (2023). antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucl. Acids Res. 51. W46–W50. 10.1093/nar/gkad344 PubMed DOI PMC

Bocquet L., Sahpaz S., Rivière C. (2018). “An overview of the antimicrobial properties of hop,” in Natural Antimicrobial Agents. Sustainable Development and Biodiversity, Vol 19, eds J. M. Mérillon, and C. Riviere (Cham: Springer; ).

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Cantalapiedra C. P., Hernández-Plaza A., Letunic I., Bork P., Huerta-Cepas J. (2021). EggNOG-Mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829. 10.1093/molbev/msab293 PubMed DOI PMC

Carver T., Harris S. H., Berriman M., Parkhill J., McQuillan J. A. (2012). Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469. 10.1093/bioinformatics/btr703 PubMed DOI PMC

Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J. (2009). DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25, 119–120. 10.1093/bioinformatics/btn578 PubMed DOI PMC

Chaudhari N. M., Gupta V. K., Dutta C. (2016). BPGA-an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6:24373. 10.1038/srep24373 PubMed DOI PMC

De Maayer P., Chan W. Y., Blom J., Venter S. N., Duffy B., Smits T. H. M., et al. . (2012). The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genom. 13:625. 10.1186/1471-2164-13-625 PubMed DOI PMC

Dutkiewicz J., Mackiewicz B., Lemieszek M. K., Golec M., Milanowski J. (2016). Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann. Agric. Environ. Med. 23, 206–222. 10.5604/12321966.1203879 PubMed DOI

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI

Elhaissoufi W., Ibnyasser A., Haddine M., Zeroual Y., Ghani R., Barakat A., et al. . (2023). Screening of potential phosphate solubilizing bacteria inoculants should consider the contrast in phosphorus bio-solubilization rate along with plant growth promotion and phosphorus use efficiency. J. Appl. Microbiol. 134:lxac077. 10.1093/jambio/lxac077 PubMed DOI

Ewels P., Magnusson. M, Lundin. S, Käller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC

Fahle A., Bereswill S., Heimesaat M. M. (2022). Antibacterial effects of biologically active ingredients in hop provide promising options to fight infections by pathogens including multi-drug resistant bacteria. Eur. J. Microbiol. Immunol. 12, 22–30. 10.1556/1886.2022.00006 PubMed DOI PMC

Gilardi G. L., Bottone E. (1971). Erwinia and yellow-pigmented Enterobacter isolates from human sources. Antonie Van Leeuwenh. 37, 529–535. 10.1007/BF02218523 PubMed DOI

Gilbert S., Xu J., Acosta K., Poulev A., Lebeis S., Lam E. (2018). Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 6:265. 10.3389/fchem.2018.00265 PubMed DOI PMC

Gómez W., Buela L., Castro L. T., Chaparro V., Ball M. M., Yarzábal L. A. (2010). Evidence for gluconic acid production by Enterobacter intermedium as an efficient strategy to avoid protozoan grazing. Soil Biol. Biochem. 42, 822–830. 10.1016/j.soilbio.2010.01.019 DOI

Goryluk-Salmonovicz A., Piórek M., Rekosz-Burlaga H., Studnicki M., Blasczyk M. (2016). Endophytic detection in selected European herbal plants. Polish J. Microbiol. 65, 369–375. 10.5604/17331331.1215617 PubMed DOI

Guevarra R. B., Magez S., Peeters E., Chung M. S., Kim K. H., Radwanska M. (2021). Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen. PLoS ONE 16:e0239792. 10.1371/journal.pone.0239792 PubMed DOI PMC

Hawar S. N. (2022). Extracellular enzyme of endophytic fungi isolated from Ziziphus spina leaves as medicinal plant. Int. J. Biomater. 2022:2135927. 10.1155/2022/2135927 PubMed DOI PMC

Huang J., Zhu Y., Han M. L., Li M., Song J., Velkov T., et al. . (2018). Comparative analysis of phosphoethanolamine transferases involved in polymyxin resistance across 10 clinically relevant Gram-negative bacteria. Int. J. Antimicrob. Agents 51, 586–593. 10.1016/j.ijantimicag.2017.12.016 PubMed DOI PMC

Jaskula B., Kafarski P., Aerts G., De Cooman L. (2008). A kinetic study on the isomerization of hop alpha acids. J. Agric. Food Chem. 56, 6408–6415. 10.1021/jf8004965 PubMed DOI

Jia M., Yu X., Jiang J., Li Z., Feng Y. (2017). The cytidine repressor participates in the regulatory pathway of indole in Pantoea agglomerans. Res. Microbiol. 7, 636–643. 10.1016/j.resmic.2017.04.006 PubMed DOI

Jiang J., Wu S., Wang J., Feng Y. (2015). AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic Microbiol. 55, 607–616. 10.1002/jobm.201400472 PubMed DOI

Kim I. J., Pusey P. L., Zhao Y., Korban S. S., Choi H., Kim K. K. (2012). Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J. Controll. Release 161, 109–115. 10.1016/j.jconrel.2012.03.028 PubMed DOI

Koçak O. F. (2019). Identification of Streptomyces strains isolated from Humulus lupulus rhizosphere and determination of plant growth promotion potential of selected strains. Turk. J. Biol. 43, 391–403. 10.3906/biy-1906-37 PubMed DOI PMC

Kolek J., Patakova P., Junkova P., Krofta K., Hynek R., Dostalek P. (2021). Isolation and identification of Pantoea agglomerans from the inflated bag with dried hop pellets stored under a modified atmosphere. J. Appl. Microbiol. 131, 281–287. 10.1111/jam.14970 PubMed DOI

Kumar P., Rani S., Dahiya P., Kumar A., Dang A. S., Pooja S. (2022). Whole genome analysis for plant growth promotion profiling of Pantoea agglomerans CPHN2, a non-rhizobial nodule endophyte. Front. Microbiol. 13:998821. 10.3389/fmicb.2022.998821 PubMed DOI PMC

Lanfear R., Schalamun M., Kainer D., Wang W., Schwessinger B. (2019). MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics 35, 523–525. 10.1093/bioinformatics/bty654 PubMed DOI PMC

Li H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. 10.1093/bioinformatics/bty191 PubMed DOI PMC

Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennel,l T., Ruan J., Homer N., et al. . (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Li S. Y., Ng I. S., Chen P. T., Chiang C. J., Chao Y. P. (2018). Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnol. Biofuels 11:256. 10.1186/s13068-018-1234-5 PubMed DOI PMC

Liang J. L., Liu J., Jia P., Yang T. T., Zeng Q. W., et al. . (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613. 10.1038/s41396-020-0632-4 PubMed DOI PMC

Liu B., Zheng D., Jin Q., Chen L., Yang J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucl. Acids Res. 47, D687–D692. 10.1093/nar/gky1080 PubMed DOI PMC

Luo H., Quan C.-L., Peng C., Gao F. (2019). Recent development of Ori-Finder system and DoriC database for microbial replication origins. Brief. Bioinform. 20, 1114–1124. 10.1093/bib/bbx174 PubMed DOI

Luziatelli F., Ficca A. G., Bonini P., Muleo R., Gatti L., Meneghin.i M., Tronati M., Melini F., Ruzzi M. (2020b). Genetic and metabolomic perspective on the production of indole-3-acetic acid by Pantoea agglomerans and use of their metabolites as biostimulants in plant nurseries. Front. Microbiol. 11:1475. 10.3389/fmicb.2020.01475 PubMed DOI PMC

Luziatelli F., Ficca A. G., Cardarelli M., Melini F., Cavalieri A., Ruzzi M. (2020a). Genome sequencing of Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant growth-promotion and tolerance to heavy metals. Microorganisms 8:153. 10.3390/microorganisms8020153 PubMed DOI PMC

Luziatelli F., Ficca A. G., Melini F., Ruzzi M. (2019). Genome sequence of the plant growth-promoting rhizobacterium Pantoea agglomerans C1. Microbiol. Resour. Announ. 8, e00828–e00819. 10.1128/MRA.00828-19 PubMed DOI PMC

Ma Y., Li B., Zhang X., Wang C., Chen W. (2022). Production of gluconic acid and its derivatives by microbial fermentation: Process improvement based on integrated routes. Front. Bioeng. Biotechnol. 10:864787. 10.3389/fbioe.2022.864787 PubMed DOI PMC

Marchler-Bauer A., Bryant S. H. (2004). CD-search: protein domain annotations on the fly. Nucl. Acids Res. 32, W327–W331. 10.1093/nar/gkh454 PubMed DOI PMC

Micci A., Zhang Q., Chang X., Kingsley K., Park L., Chiaranunt P., et al. . (2022). Histochemical evidence for nitrogen-transfer endosymbiosis in non-photosynthetic cells of leaves and inflorescence bracts of angiosperms. Biology 11:876. 10.3390/biology11060876 PubMed DOI PMC

Milligan S. R., Kalita J. C., Pocock V., Van de Kauter V., Stevens J. F., Deinzer M. L., et al. . (2000). The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J. Clin. Endocrinol. Metab. 85, 4912–4915. 10.1210/jcem.85.12.7168 PubMed DOI

Miranda C. L., Stevens J. F., Helmrich A., Henderson M. C., Rodriguez R. J., Yang Y. H., et al. . (1999). Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 37, 271–285. 10.1016/S.0278-6915(99)00019-8 PubMed DOI

Nikel P. I., Chavarría M., Fuhrer T., Sauer U., de Lorenzo V. (2015). Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 290, 25920–25932. 10.1074/jbc.M115.687749 PubMed DOI PMC

Noori F., Etesami H., Noori S., Forouzan E., Jouzani G. S., Malboobi M. A. (2021). Whole genome sequence of Pantoea agglomerans ANP8, a salinity and drought stress–resistant bacterium isolated from alfalfa (Medicago sativa L.) root nodules. Biotechnol. Rep. 29:e00600. 10.1016/j.btre.2021.e00600 PubMed DOI PMC

O'Leary N. A., Wright M. W., Brister J. R., Ciufo S., Haddad D., McVeigh R., et al. . (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucl. Acids Res. 44, D733–745. 10.1093/nar/gkv1189 PubMed DOI PMC

Parker J. K., Davies B. W. (2022). Microcins reveal natural mechanisms of bacterial manipulation to inform therapeutic development. Microbiology 168:001175. 10.1099/mic.0.001175 PubMed DOI PMC

Pronk J. T., Levering P. R., Olijve W., van Dijken J. P. (1989). Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Microb. Technol. 11, 160–164. 10.1016/0141-0229(89)90075-6 DOI

Ramachandran S., Fontanille P., Pandey A., Larroche C. (2006). Gluconic acid: properties, applications and microbial production. Food Technol. Biotechnol. 44, 185–195. Available online at: https://hrcak.srce.hr/file/161891

Rawat P., Das S., Shankhdhar D., Shankhdar S. C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 21, 49–68. 10.1007/s42729-020-00342-7 DOI

Rezzonico F., Smits T. H., Montesinos E., Frey J. E., Duffy B. (2009). Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 9:204. 10.1186/1471-2180-9-204 PubMed DOI PMC

Roberts R. J., Vincze T., Posfai J., Macelis D. (2023). REBASE: a database for DNA restriction and modification: enzymes, genes and genomes. Nucl. Acids Res. 51, D629–D630. 10.1093/nar/gkac975 PubMed DOI PMC

Schmidt C. S., Lovecka P., Mrnka L., Vychodilova A., Strejcek M., Fenclova M., et al. . (2018). Distinct communities of poplar endophytes on an unpolluted and a risk element-polluted site and their plant growth-promoting potential in vitro. Microb. Ecol. 75, 955–969. 10.1007/s00248-017-1103-y PubMed DOI

Sedlar K., Vasylkivska M., Musilova J., Branska B., Provaznik I., Patakova P. (2021). Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium diolis DSM 15410. Genomics 113, 1109–1119. 10.1016/j.ygeno.2020.11.007 PubMed DOI

Seneviratne G., Weerasekara M. L. M. A.W., Seneviratne C., Zavahir J. S., Kcskés M. L., Kennedy I. R. (2010). “Importance of biofilm formation in plant growth promoting rhizobacterial action,” in Plant Growth and Health Promoting Bacteria, ed D. K. Maheshawari (Berlin: Springer-Verlag; ), 81–95.

Sevigny J. L., Lloyd B., McComish C., Ramsey A., Koziol L. (2019). Whole-genome sequences of Pantoea agglomerans BL3, Pseudomonas fluorescens BL, and Pseudomonas stutzeri CM14, isolated from Hops (Humulus lupulus). Microbiol. Resour. Announ. 8, e00545–e00519. 10.1128/MRA.00545-19 PubMed DOI PMC

Sezonov G., Joseleau-Petit D., D'Ari R. (2007). Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol. 189, 8746–8749. 10.1128/JB.01368-07 PubMed DOI PMC

Shariati J. V, Malboobi M. A., Tabrizi Z., Tevakol E., Owlia P., et al. . (2017). Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5. Sci. Rep. 7:15610. 10.1038/s41598-017-15820-9 PubMed DOI PMC

Sleha R., Radochova V., Malis J., Mikyska A., Houska M., Krofta K., et al. . (2021). Strong antimicrobial and healing effects of Beta-Acids from Hops in methicillin-resistant Staphylococcus aureus-infected external wounds in vivo. Antibiotics 10:708. 10.3390/antibiotics10060708 PubMed DOI PMC

Sorek R., Lawrence C. M., Wiedenheft B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82, 237–266. 10.1146/annurev-biochem-072911-172315 PubMed DOI

Soutar C. D., Stavrinides J. (2019). Molecular validation of clinical Pantoea isolates identified by MALDI-TOF. PLoS ONE 14:e0224731. 10.1371/journal.pone.0224731 PubMed DOI PMC

Stranska M., Lovecka P., Vrchotova B., Uttl L., Bechynska K., Behner A., et al. . (2021). Bacterial endophytes from Vitis vinifera L – Metabolomics characterization of plant-endophyte crosstalk. Chem. Biodivers. 18:e2100516. 10.1002/cbdv.202100516 PubMed DOI

Sulja A., Pothier J. F., Blom J., Moretti C., Buonario R., Rezzonico F., et al. . (2022). Comparative genomics to examine the endophytic potential of Pantoea agglomerans DAPP-PG 734. BMC Genom. 23:742. 10.1186/s12864-022-08966-y PubMed DOI PMC

Taboada B., Estrada K., Ciria R., Merino E. (2018). Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 118–120. 10.1093/bioinformatics/bty496 PubMed DOI PMC

Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., et al. . (2016). NCBI prokaryotic genome annotation pipeline. Nucl. Acids Res. 44, 6614–6624. 10.1093/nar/gkw569 PubMed DOI PMC

Tecon R., Leveau J. (2016). Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity. Sci. Rep. 6:31914. 10.1038/srep31914 PubMed DOI PMC

Torrents E. (2014). Ribonucleotide reductases: essential enzymes for bacterial life. Front. Cell. Infect. Microbiol. 4:52. 10.3389/fcimb.2014.00052 PubMed DOI PMC

Vanneste J. L., Cornish D. A., Yu J., Voyle M. D. (2002). The peptide antibiotic produced by Pantoea agglomerans EH252 is a microcin. Acta Hortic. 590, 285–290. 10.17660/ActaHortic.2002.590.42 DOI

Vaser R., Sović I., Nagarajan N., Šikić M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746. 10.1101/gr.214270.116 PubMed DOI PMC

Walker B. J., Abeel T., Shea T., Priest M., Abouellie,l A., Sakthikumar S., et al. . (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC

Walterson A. M., Stavrinides J. (2015). Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968–984. 10.1093/femsre/fuv027 PubMed DOI

Wang J., Fung D. Y. C. (1996). Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit. Rev. Microbiol. 2, 101–138. 10.3109/10408419609106457 PubMed DOI

Yu X., Jiang J., Liang C., Zhang X., Wang J., Shen D., et al. . (2016). Indole affects the formation of multicellular aggregate structures in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol. 62, 31–37. 10.2323/jgam.62.31 PubMed DOI

Zhang S., Soltis D. E., Yang Y., Li D., Yi T. (2011). Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol. Phylogenet. Evol. 60, 21–28. 10.1016/j.ympev.2011.04.008 PubMed DOI

Zheng J., Xia Y., Liu Q., He X., Yu J., Feng Y. (2019). Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol. 65, 11–17. 10.2323/jgam.2018.03.002 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...