Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22808223
PubMed Central
PMC3396604
DOI
10.1371/journal.pone.0040653
PII: PONE-D-12-11776
Knihovny.cz E-zdroje
- MeSH
- Bacteria genetika izolace a purifikace metabolismus MeSH
- benzoáty metabolismus MeSH
- bifenylové sloučeniny metabolismus MeSH
- biodegradace MeSH
- DNA bakterií metabolismus MeSH
- fylogeneze MeSH
- izotopové značení MeSH
- izotopy uhlíku MeSH
- látky znečišťující půdu analýza MeSH
- naftaleny metabolismus MeSH
- půdní mikrobiologie * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzoáty MeSH
- bifenylové sloučeniny MeSH
- biphenyl MeSH Prohlížeč
- DNA bakterií MeSH
- izotopy uhlíku MeSH
- látky znečišťující půdu MeSH
- naftaleny MeSH
- naphthalene MeSH Prohlížeč
Bacteria were identified associated with biodegradation of aromatic pollutants biphenyl, benzoate, and naphthalene in a long-term polychlorinated biphenyl- and polyaromatic hydrocarbon-contaminated soil. In order to avoid biases of culture-based approaches, stable isotope probing was applied in combination with sequence analysis of 16 S rRNA gene pyrotags amplified from (13)C-enriched DNA fractions. Special attention was paid to pyrosequencing data analysis in order to eliminate the errors caused by either generation of amplicons (random errors caused by DNA polymerase, formation of chimeric sequences) or sequencing itself. Therefore, sample DNA was amplified, sequenced, and analyzed along with the DNA of a mock community constructed out of 8 bacterial strains. This warranted that appropriate tools and parameters were chosen for sequence data processing. (13)C-labeled metagenomes isolated after the incubation of soil samples with all three studied aromatics were largely dominated by Proteobacteria, namely sequences clustering with the genera Rhodanobacter Burkholderia, Pandoraea, Dyella as well as some Rudaea- and Skermanella-related ones. Pseudomonads were mostly labeled by (13)C from naphthalene and benzoate. The results of this study show that many biphenyl/benzoate-assimilating bacteria derive carbon also from naphthalene, pointing out broader biodegradation abilities of some soil microbiota. The results also demonstrate that, in addition to traditionally isolated genera of degradative bacteria, yet-to-be cultured bacteria are important players in bioremediation. Overall, the study contributes to our understanding of biodegradation processes in contaminated soil. At the same time our results show the importance of sequencing and analyzing a mock community in order to more correctly process and analyze sequence data.
Zobrazit více v PubMed
Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int. 2005;12:34–48. PubMed
McGuinness M, Dowling D. Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health. 2009;6:2226–2247. PubMed PMC
Manoli E, Samara C. Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends in Analytical Chemistry. 1999;18:417–428.
Suess MJ. The environmental load and cycle of polycyclic aromatic hydrocarbons. Science of The Total Environment. 1976;6:239–250.
Furukawa K, Hayase N, Taira K, Tomizuka N. Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J Bacteriol. 1989;171:5467–5472. PubMed PMC
Schnoor JL, Licht LA, Mccutcheon SC, Wolfe NL, Carreira LH. Phytoremediation of organic and nutrient contaminants. Environ Sci Technol. 1995;29:A318–A323. PubMed
Sylvestre M. Isolation method for bacterial isolates capable of growth on p-chlorobiphenyl. Appl Environ Microbiol. 1980;39:1223–1224. PubMed PMC
Kim S, Picardal F. Microbial growth on dichlorobiphenyls chlorinated on both rings as a sole carbon and energy source. Appl Environ Microbiol. 2001;67:1953–1955. PubMed PMC
Furukawa K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J Gen Appl Microbiol. 2000;46:283–296. PubMed
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–191. PubMed
Pieper DH, Seeger M. Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol. 2008;15:121–138. PubMed
Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem. 2003;67:225–243. PubMed
Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. Environmental Pollution. 2005;133:71–84. PubMed
Radajewski S, Ineson P, Parekh NR, Murrell JC. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403:646–649. PubMed
Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol. 2004;6:111–120. PubMed
Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, et al. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology. 2002;148:2331–2342. PubMed
Uhlík O, Ječná K, Leigh MB, Macková M, Macek T. DNA-based stable isotope probing: a link between community structure and function. Sci Total Environ. 2009;407:3611–3619. PubMed
Madsen EL. Murrell JC, Whiteley A, editors. Stable Isotope Probing Techniques and Bioremediation. 2010. pp. 165–202. Stable Isotope Probing and Related Technologies. Washington, DC: ASM Press.
Chen Y, Murrell JC. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 2010;18:157–163. PubMed
Aanderud ZT, Lennon JT. Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria. Applied and Environmental Microbiology. 2011;77:4589–4596. PubMed PMC
Xia WW, Zhang CX, Zeng XW, Feng YZ, Weng JH, et al. Autotrophic growth of nitrifying community in an agricultural soil. Isme Journal. 2011;5:1226–1236. PubMed PMC
Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, et al. Identification of nitrogen-incorporating bacteria in petroleum-contaminated Arctic soils by using 15N DNA-based stable isotope probing and pyrosequencing. Applied and Environmental Microbiology. 2011;77:4163–4171. PubMed PMC
Bernard L, Chapuis-Lardy L, Razafimbelo T, Razafindrakoto M, Pablo A-L, et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME Journal. 2012;6:213–222. PubMed PMC
Pilloni G, von Netzer F, Engel M, Lueders T. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiology Ecology. 2011;78:165–175. PubMed
Lee TK, Lee J, Sul WJ, Iwai S, Chai BC, et al. Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat. Applied and Environmental Microbiology. 2011;77:3888–3891. PubMed PMC
Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12:118–123. PubMed
Huse SM, Welch DM, Morrison HG, Sogin ML. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol. 2010;12:1889–1898. PubMed PMC
Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods. 2010;7:668–669. PubMed PMC
Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12. 2011. PubMed PMC
Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, et al. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods. 2009;6:639–641. PubMed
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 2009;75:7537–7541. PubMed PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. PubMed PMC
Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 2004;20:2317–2319. PubMed
Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, et al. Black Box Chimera Check (B2C2): a Windows-based software for batch depletion of chimeras from bacterial 16 S rRNA gene datasets. The Open Microbiology Journal. 2010;4:47–52. PubMed PMC
Macková M, Prouzová P, Štursa P, Ryšlavá E, Uhlík O, et al. Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res. 2009;16:817–829. PubMed
Lozupone CA, Knight R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev. 2008;32:557–578. PubMed PMC
Zhang L, Xu Z. Assessing bacterial diversity in soil. J Soil Sediment. 2008;8:379–388.
Gutierrez-Zamora ML, Manefield M. An appraisal of methods for linking environmental processes to specific microbial taxa. Reviews in Environmental Science and Bio-Technology. 2010;9:153–185.
Bopp LH. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Indust Microbiol. 1986;1:23–29.
Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA. 2006;103:15280–15287. PubMed PMC
Vézina J, Barriault D, Sylvestre M. Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit. J Mol Microbiol Biotechnol. 2008;15:139–151. PubMed
Hurtubise Y, Barriault D, Powlowski J, Sylvestre M. Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components. J Bacteriol. 1995;177:6610–6618. PubMed PMC
Li A, Qu Y, Zhou J, Ma F. Characterization of a newly isolated biphenyl-degrading bacterium, Dyella ginsengisoli LA-4. Applied Biochemistry and Biotechnology. 2009;159:687–695. PubMed
Tillmann S, Strompl C, Timmis KN, Abraham WR. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol. 2005;52:207–217. PubMed
Pumphrey GM, Madsen EL. Field-based stable isotope probing reveals the identities of benzoic acid-metabolizing microorganisms and their in situ growth in agricultural soil. Appl Environ Microbiol. 2008;74:4111–4118. PubMed PMC
Langenheder S, Prosser JI. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environmental Microbiology. 2008;10:2245–2256. PubMed
Kanaly RA, Harayama S, Watanabe K. Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol. 2002;68:5826–5833. PubMed PMC
Gentry TJ, Wang G, Rensing C, Pepper IL. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. Microbial Ecology. 2004;48:90–102. PubMed
Nalin R, Simonet P, Vogel TM, Normand P. Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49 Pt. 1999;1:19–23. PubMed
Uhlík O, Ječná K, Macková M, Vlček C, Hroudová M, et al. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol. 2009;75:6471–6477. PubMed PMC
Luo W, D’Angelo EM, Coyne MS. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere. 2008;70:364–373. PubMed
Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances. 2010;28:367–374. PubMed
Taira K, Hirose J, Hayashida S, Furukawa K. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 1992;267:4844–4853. PubMed
Ryšlavá E, Krejčík Z, Macek T, Nováková H, Demnerová K, et al. Study of PCB degradation in real contaminated soil. Fresenius Environ Bull. 2003;12:296–301.
Nováková H, Vošáhlíková M, Pazlarová J, Macková M, Burkhard J, et al. PCB metabolism by Pseudomonas sp. P2. Int Biodeterior Biodegrad. 2002;50:47–54.
Singer AC, Wong CS, Crowley DE. Differential enantioselective transformation of atropisomeric polychlorinated biphenyls by multiple bacterial strains with different inducing compounds. Appl Environ Microbiol. 2002;68:5756–5759. PubMed PMC
Jones MD, Crandell DW, Singleton DR, Aitken MD. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environmental Microbiology. 2011;13:2623–2632. PubMed PMC
Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, et al. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16 S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol. 2003;69:1614–1622. PubMed PMC
Yu CP, Chu KH. A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ Sci Technol. 2005;39:9611–9619. PubMed
Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, et al. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA. 2003;100:13591–13596. PubMed PMC
Singleton DR, Powell SN, Sangaiah R, Gold A, Ball LM, et al. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol. 2005;71:1202–1209. PubMed PMC
Sul WJ, Park J, Quensen JF, III, Rodrigues JL, Seliger L, et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol. 2009;75:5501–5506. PubMed PMC
Leigh MB, Pellizari VH, Uhlík O, Sutka R, Rodrigues J, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 2007;1:134–148. PubMed
Hardisson C, Sala-Trepat JM, Stanier RY. Pathways for the oxidation of aromatic compounds by Azotobacter. Journal of general microbiology. 1969;59:1–11. PubMed
White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Current Opinion in Biotechnology. 1996;7:301–306. PubMed
Kiener P, Tshisuaka B, Fetzner S, Lingens F. Degradation of benzoate via benzoyl-coenzyme A and gentisate by Bacillus stearothermophilus PK1, and purification of gentisate 1,2-dioxygenase. Biology and Fertility of Soils. 1996;23:307–313.
Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International journal of systematic and evolutionary microbiology. 2003;53:1155–1163. PubMed
Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environmental Microbiology. 2006;8:1736–1745. PubMed
Singleton DR, Richardson SD, Aitken MD. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation. 2011;22:1061–1073. PubMed PMC
Uhlík O, Strejček M, Junková P, Šanda M, Hroudová M, et al. Matrix-Assisted Laser Desorption Ionization (MALDI)-Time of Flight Mass Spectrometry- and MALDI Biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl Environ Microbiol. 2011;77:6858–6866. PubMed PMC
Ionescu M, Beranová K, Dudková V, Kochánková L, Demnerová K, et al. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int Biodeterior Biodegrad. 2009;63:667–672.
Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16 S rRNA-based studies. PLoS ONE. 2011;6:e27310. PubMed PMC
Pavlíková D, Macek T, Macková M, Pavlík M. Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int J Phytoremediation. 2007;9:71–78. PubMed
Ginard M, Lalucat J, Tummler B, Romling U. Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. Int J Syst Bacteriol. 1997;47:132–143. PubMed
Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16 S primers. J Microbiol Methods. 2003;55:541–555. PubMed
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–D145. PubMed PMC
Thompson JR, Marcelino LA, Polz MF. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 2002;30:2083–2088. PubMed PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. PubMed PMC
Strnad H, Ridl J, Paces J, Kolar M, Vlcek C, et al. Complete genome sequence of the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. Journal of Bacteriology. 2011;193:791–792. PubMed PMC
Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C, et al. Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003. Journal of Bacteriology. 2010;192:3545–3546. PubMed PMC
Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science. 2001;294:2317–2323. PubMed
Westerberg K, Elvang AM, Stackebrandt E, Jansson JK. Arthrobacter chlorophenolicus sp nov., a new species capable of degrading high concentrations of 4-chlorophenol. International Journal of Systematic and Evolutionary Microbiology. 2000;50:2083–2092. PubMed
Link L, Sawyer J, Venkateswaran K, Nicholson W. Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microbial Ecology. 2004;47:159–163. PubMed
Rokem JS, Vongsangnak W, Nielsen J. Comparative metabolic capabilities for Micrococcus luteus NCTC 2665, the “Fleming” strain, and Actinobacteria. Biotechnology and Bioengineering. 2011;108:2770–2775. PubMed
McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA. 2006;103:15582–15587. PubMed PMC
Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences
Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment
Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation