Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25921720
DOI
10.1007/s12223-015-0396-9
PII: 10.1007/s12223-015-0396-9
Knihovny.cz E-zdroje
- MeSH
- anaerobióza MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- molekulární sekvence - údaje MeSH
- odpadní vody chemie mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA bakterií MeSH
- odpadní vody MeSH
- RNA ribozomální 16S MeSH
Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus.
Zobrazit více v PubMed
Environ Sci Technol. 2014 Aug 19;48(16):9446-53 PubMed
Int J Syst Evol Microbiol. 2012 Oct;62(Pt 10):2457-62 PubMed
Environ Sci Technol. 2013 Feb 19;47(4):1945-51 PubMed
Chemosphere. 2014 Jun;105:146-51 PubMed
FEMS Microbiol Rev. 2012 Jul;36(4):862-76 PubMed
Int J Syst Bacteriol. 1999 Jan;49 Pt 1:19-23 PubMed
Environ Microbiol. 2010 Jul;12(7):1889-98 PubMed
Microbiol Immunol. 2013 Mar;57(3):240-5 PubMed
Bioresour Technol. 2014 Aug;165:50-9 PubMed
PLoS One. 2012;7(7):e40467 PubMed
Environ Pollut. 2012 Feb;161:229-34 PubMed
Appl Environ Microbiol. 2008 Sep;74(17):5267-75 PubMed
Appl Microbiol Biotechnol. 2014 Apr;98(7):3317-26 PubMed
Environ Sci Technol. 2011 Sep 1;45(17):7173-9 PubMed
ISME J. 2013 Mar;7(3):457-60 PubMed
BMC Bioinformatics. 2011 Jan 28;12:38 PubMed
J Comput Biol. 2000 Feb-Apr;7(1-2):203-14 PubMed
Appl Environ Microbiol. 2012 Feb;78(4):1039-47 PubMed
Water Res. 2013 Dec 1;47(19):7098-108 PubMed
Bioresour Technol. 2011 Apr;102(7):4734-41 PubMed
Nat Methods. 2010 Sep;7(9):668-9 PubMed
Appl Microbiol Biotechnol. 2013 Oct;97(20):9245-56 PubMed
Proc Natl Acad Sci U S A. 1985 Oct;82(20):6955-9 PubMed
Environ Sci Technol. 2014 Aug 19;48(16):9438-45 PubMed
J Biosci Bioeng. 2012 Nov;114(5):518-20 PubMed
Curr Opin Biotechnol. 2008 Dec;19(6):544-9 PubMed
J Environ Manage. 2014 Oct 1;143:54-60 PubMed
PLoS One. 2012;7(7):e40653 PubMed
Environ Sci Pollut Res Int. 2015 May;22(10):7237-47 PubMed
Appl Environ Microbiol. 2007 Aug;73(16):5261-7 PubMed
Sci Total Environ. 2014 Jun 15;484:129-36 PubMed
Lett Appl Microbiol. 2014 Jul;59(1):65-70 PubMed
Environ Sci Technol. 2013 May 21;47(10):5433-41 PubMed
PLoS One. 2011;6(12):e27310 PubMed
J Appl Microbiol. 2007 Dec;103(6):2420-9 PubMed
BMC Bioinformatics. 2008 Sep 19;9:386 PubMed
Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 PubMed
Chemosphere. 2015 Jan;118:315-21 PubMed
J Bacteriol. 2012 Jul;194(13):3544-5 PubMed
Appl Environ Microbiol. 2005 Dec;71(12):8228-35 PubMed
RNA Biol. 2014;11(3):239-43 PubMed
Microb Ecol. 2004 Jul;48(1):90-102 PubMed
Syst Appl Microbiol. 2013 Jun;36(4):281-90 PubMed
Chemosphere. 2008 Jan;70(3):364-73 PubMed
Clin Microbiol Infect. 2009 Oct;15(10):888-93 PubMed
Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed
Water Res. 2010 Jul;44(14):4252-60 PubMed
Diagn Microbiol Infect Dis. 2012 Oct;74(2):177-80 PubMed
Appl Environ Microbiol. 2007 Mar;73(5):1576-85 PubMed