Microbial Communities in Soils and Endosphere of Solanum tuberosum L. and their Response to Long-Term Fertilization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-02836S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
32911685
PubMed Central
PMC7566005
DOI
10.3390/microorganisms8091377
PII: microorganisms8091377
Knihovny.cz E-zdroje
- Klíčová slova
- NPK, endophytic communities, manure, sewage sludge, soil microbial communities,
- Publikační typ
- časopisecké články MeSH
An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers.
Zobrazit více v PubMed
Johnston-Monje D., Raizada M.N. Comprehensive Biotechnology. Elsevier; Amsterdam, The Netherlands: 2011. Plant and Endophyte Relationships; pp. 713–727.
European Commission COM(2015) 614 European Commission . Closing the Loop—An EU Action Plan for the Circular Economy. European Commission; Brussels, Belgium: 2015. COM (2015) 614.
Garbeva P., van Veen J.A., van Elsas J.D. Microbial Diversity in Soil: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annu. Rev. Phytopathol. 2004;42:243–270. doi: 10.1146/annurev.phyto.42.012604.135455. PubMed DOI
Wei Z., Yang T., Friman V.-P., Xu Y., Shen Q., Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413. doi: 10.1038/ncomms9413. PubMed DOI PMC
Treseder K.K., Balser T.C., Bradford M.A., Brodie E.L., Dubinsky E.A., Eviner V.T., Hofmockel K.S., Lennon J.T., Levine U.Y., MacGregor B.J., et al. Integrating microbial ecology into ecosystem models: Challenges and priorities. Biogeochemistry. 2012;109:7–18. doi: 10.1007/s10533-011-9636-5. DOI
Rousk J., Bengtson P. Microbial regulation of global biogeochemical cycles. Front. Microbiol. 2014;5 doi: 10.3389/fmicb.2014.00103. PubMed DOI PMC
Schulz S., Brankatschk R., Dümig A., Kögel-Knabner I., Schloter M., Zeyer J. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences. 2013;10:3983–3996. doi: 10.5194/bg-10-3983-2013. DOI
Anderson T.-H. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosyst. Environ. 2003;98:285–293. doi: 10.1016/S0167-8809(03)00088-4. DOI
Herencia J.F., Ruiz-Porras J.C., Melero S., Garcia-Galavis P.A., Morillo E., Maqueda C. Comparison between Organic and Mineral Fertilization for Soil Fertility Levels, Crop Macronutrient Concentrations, and Yield. Agron. J. 2007;99:973–983. doi: 10.2134/agronj2006.0168. DOI
Zhang Y., Shen H., He X., Thomas B.W., Lupwayi N.Z., Hao X., Thomas M.C., Shi X. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.01325. PubMed DOI PMC
Blanchet G., Gavazov K., Bragazza L., Sinaj S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016;230:116–126. doi: 10.1016/j.agee.2016.05.032. DOI
Geisseler D., Scow K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014;75:54–63. doi: 10.1016/j.soilbio.2014.03.023. DOI
Francioli D., Schulz E., Lentendu G., Wubet T., Buscot F., Reitz T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.01446. PubMed DOI PMC
Chaparro J.M., Sheflin A.M., Manter D.K., Vivanco J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils. 2012;48:489–499. doi: 10.1007/s00374-012-0691-4. DOI
Papik J., Folkmanova M., Polivkova M., Suman J., Uhlik O. The Invisible Life Inside Plants: Deciphering the Riddles of Endophytic Bacterial Diversity. Biotechnol. Adv. 2020:107614. doi: 10.1016/j.biotechadv.2020.107614. PubMed DOI
Miliute I., Buzaite O., Baniulis D., Stanys V. Bacterial endophytes in agricultural crops and their role in stress tolerance: A review. Zemdirb. Agric. 2015;102:465–478. doi: 10.13080/z-a.2015.102.060. DOI
Guo B., Wang Y., Sun X., Tang K. Bioactive natural products from endophytes: A review. Appl. Biochem. Microbiol. 2008;44:136–142. doi: 10.1134/S0003683808020026. PubMed DOI
Yadav A. Exploring the Potential of Endophytes in Agriculture: A Minireview. APAR. 2017;6 doi: 10.15406/apar.2017.06.00221. DOI
White J.F., Kingsley K.L., Zhang Q., Verma R., Obi N., Dvinskikh S., Elmore M.T., Verma S.K., Gond S.K., Kowalski K.P. Review: Endophytic microbes and their potential applications in crop management. Pest. Manag. Sci. 2019;75:2558–2565. doi: 10.1002/ps.5527. PubMed DOI PMC
Krell V., Unger S., Jakobs-Schoenwandt D., Patel A.V. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecology. 2018;34:43–49. doi: 10.1016/j.funeco.2018.04.002. DOI
Ikeda S., Sasaki K., Okubo T., Yamashita A., Terasawa K., Bao Z., Liu D., Watanabe T., Murase J., Asakawa S., et al. Low Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions. Microb. Environ. 2014;29:50–59. doi: 10.1264/jsme2.ME13110. PubMed DOI PMC
Redman R.S., Kim Y.O., Woodward C.J.D.A., Greer C., Espino L., Doty S.L., Rodriguez R.J. Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change. PLoS ONE. 2011;6:e14823. doi: 10.1371/journal.pone.0014823. PubMed DOI PMC
Buchholz F., Kostić T., Sessitsch A., Mitter B. The potential of plant microbiota in reducing postharvest food loss. Microb. Biotechnol. 2018;11:971–975. doi: 10.1111/1751-7915.13252. PubMed DOI PMC
Seghers D., Wittebolle L., Top E.M., Verstraete W., Siciliano S.D. Impact of Agricultural Practices on the Zea mays L. Endophytic Community. Appl. Environ Microbiol. 2004;70:1475–1482. doi: 10.1128/AEM.70.3.1475-1482.2004. PubMed DOI PMC
Pariona-Llanos R., Ibañez de Santi Ferrara F., Soto Gonzales H.H., Barbosa H.R. Influence of organic fertilization on the number of culturable diazotrophic endophytic bacteria isolated from sugarcane. Eur. J. Soil Biol. 2010;46:387–393. doi: 10.1016/j.ejsobi.2010.08.003. DOI
Yang Q., Zhang H., Guo Y., Tian T. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi. Int. J. Environ. Res. Public Health. 2016;13:662. doi: 10.3390/ijerph13070662. PubMed DOI PMC
Manyi-Loh C., Mamphweli S., Meyer E., Makaka G., Simon M., Okoh A. An Overview of the Control of Bacterial Pathogens in Cattle Manure. IJERPH. 2016;13:843. doi: 10.3390/ijerph13090843. PubMed DOI PMC
Stiborova H., Wolfram J., Demnerova K., Macek T., Uhlik O. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion. Folia Microbiol. 2015;60:531–539. doi: 10.1007/s12223-015-0396-9. PubMed DOI
FAO . World Food and Agriculture—Statistical Pocketbook 2019. Food And Agriculture Organization of the United Nations; Rome, Italy: 2019.
Lopez-Echartea E., Strejcek M., Mukherjee S., Uhlik O., Yrjälä K. Bacterial succession in oil-contaminated soil under phytoremediation with poplars. Chemosphere. 2020;243:125242. doi: 10.1016/j.chemosphere.2019.125242. PubMed DOI
Fraraccio S., Strejcek M., Dolinova I., Macek T., Uhlik O. Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE) Sci. Rep. 2017;7 doi: 10.1038/s41598-017-07760-1. PubMed DOI PMC
Taylor D.L., Walters W.A., Lennon N.J., Bochicchio J., Krohn A., Caporaso J.G., Pennanen T. Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing. Appl. Environ. Microbiol. 2016;82:7217–7226. doi: 10.1128/AEM.02576-16. PubMed DOI PMC
R Core Team R . A Language and Environment for Statistical Computing in R Foundation for Statistical Computing. R Core Team R; Vienna, Austria: 2017.
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Callahan B.J. Silva Taxonomic Training Data Formatted for DADA2 (Silva version 132) [Data set] Zenodo; Callahan, Benjamin: 2018. DOI
UNITE Community . UNITE Community; 2019. [(accessed on 04 September 2020)]. UNITE General FASTA Release for Fungi 2. Version 18.11.2018. Available online: https://unite.ut.ee/repository.php.
McMurdie P.J., Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Oksanen J., Blanchet F.G., Kindt R., Legendre P., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. vegan: Community Ecology Package. [(accessed on 04 September 2020)];2019 R package version 2.5-6. Available online: https://cran.r-project.org/web/packages/vegan/index.html.
Callahan B.J., Sankaran K., Fukuyama J.A., McMurdie P.J., Holmes S.P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Res. 2016;5:1492. doi: 10.12688/f1000research.8986.1. PubMed DOI PMC
Legendre P., Gallagher E.D.G. Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia. 2001;129:271–280. doi: 10.1007/s004420100716. PubMed DOI
Anderson M.J. Permutational Multivariate Analysis of Variance (PERMANOVA) In: Balakrishnan N., Colton T., Everitt B., Piegorsch W., Ruggeri F., Teugels J.L., editors. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd.; Chichester, UK: 2014. pp. 1–15.
Anderson M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST + : Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Frąc M., Hannula S.E., Bełka M., Jędryczka M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018;9:707. doi: 10.3389/fmicb.2018.00707. PubMed DOI PMC
Rashid M.I., Mujawar L.H., Shahzad T., Almeelbi T., Ismail I.M.I., Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016;183:26–41. doi: 10.1016/j.micres.2015.11.007. PubMed DOI
Wei Z., Gu Y., Friman V.-P., Kowalchuk G.A., Xu Y., Shen Q., Jousset A. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 2019;5:eaaw0759. doi: 10.1126/sciadv.aaw0759. PubMed DOI PMC
Wang Z., Liu Y., Zhao L., Zhang W., Liu L. Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem. PeerJ. 2019;7:e6497. doi: 10.7717/peerj.6497. PubMed DOI PMC
Duan Y., Zhou A., Wen K., Liu Z., Liu W., Wang A., Yue X. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue. Front. Environ. Sci. Eng. 2019;13:3. doi: 10.1007/s11783-019-1086-7. DOI
Pang L., Ge L., Yang P., He H., Zhang H. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions. Bioresour. Technol. 2018;255:16–21. doi: 10.1016/j.biortech.2018.01.104. PubMed DOI
Zhang T., Shao M.-F., Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012;6:1137. doi: 10.1038/ismej.2011.188. PubMed DOI PMC
Adams G.O., Fufeyin P.T., Okoro S.E., Ehinomen I. Bioremediation, Biostimulation and Bioaugmention: A Review. Int. J. Environ. Bioremediation Biodegrad. 2015;3:28–39. doi: 10.12691/ijebb-3-1-5. DOI
Hemmat-Jou M.H., Safari-Sinegani A.A., Mirzaie-Asl A., Tahmourespour A. Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology. 2018;27:1281–1291. doi: 10.1007/s10646-018-1981-x. PubMed DOI
Lopez-Echartea E., Strejcek M., Mateju V., Vosahlova S., Kyclt R., Demnerova K., Uhlik O. Bioremediation of chlorophenol-contaminated sawmill soil using pilot-scale bioreactors under consecutive anaerobic-aerobic conditions. Chemosphere. 2019;227:670–680. doi: 10.1016/j.chemosphere.2019.04.036. PubMed DOI
Khillare P.S., Sattawan V.K., Jyethi D.S. Profile of polycyclic aromatic hydrocarbons in digested sewage sludge. Environ. Technol. 2018:1–10. doi: 10.1080/09593330.2018.1512654. PubMed DOI
Stiborova H., Kolar M., Vrkoslavova J., Pulkrabova J., Hajslova J., Demnerova K., Uhlik O. Linking toxicity profiles to pollutants in sludge and sediments. J. Hazard. Mater. 2017;321:672–680. doi: 10.1016/j.jhazmat.2016.09.051. PubMed DOI
Stiborova H., Strejcek M., Musilova L., Demnerova K., Uhlik O. Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge. Chemosphere. 2020;238:124629. doi: 10.1016/j.chemosphere.2019.124629. PubMed DOI
Maropola M.K.A., Ramond J.-B., Trindade M. Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench) J. Microbiol. Methods. 2015;112:104–117. doi: 10.1016/j.mimet.2015.03.012. PubMed DOI
Zhang Z., Yuen G.Y. The Role of Chitinase Production by Stenotrophomonas maltophilia Strain C3 in Biological Control of Bipolaris sorokiniana. Phytopathology. 2000;90:384–389. doi: 10.1094/PHYTO.2000.90.4.384. PubMed DOI
Sommermann L., Geistlinger J., Wibberg D., Deubel A., Zwanzig J., Babin D., Schlüter A., Schellenberg I. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing. PLoS ONE. 2018;13:e0195345. doi: 10.1371/journal.pone.0195345. PubMed DOI PMC
Berruti A., Lumini E., Balestrini R., Bianciotto V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2016;6 doi: 10.3389/fmicb.2015.01559. PubMed DOI PMC
Miransari M. Soil microbes and plant fertilization. Appl. Microbiol. Biotechnol. 2011;92:875–885. doi: 10.1007/s00253-011-3521-y. PubMed DOI
Zhang H., Wu X., Li G., Qin P. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fertil. Soils. 2011;47:543. doi: 10.1007/s00374-011-0563-3. DOI
Liu K., Ding H., Yu Y., Chen B. A Cold-Adapted Chitinase-Producing Bacterium from Antarctica and Its Potential in Biocontrol of Plant Pathogenic Fungi. Marine Drugs. 2019;17:695. doi: 10.3390/md17120695. PubMed DOI PMC
Mishra P., Kshirsagar P.R., Nilegaonkar S.S., Singh S.K. Statistical optimization of medium components for production of extracellular chitinase by Basidiobolus ranarum: A novel biocontrol agent against plant pathogenic fungi. J. Basic Microbiol. 2012;52:539–548. doi: 10.1002/jobm.201100446. PubMed DOI
Hallen H.E., Watling R., Adams G.C. Taxonomy and toxicity of Conocybe lactea and related species. Mycol. Res. 2003;107:969–979. doi: 10.1017/S0953756203008190. PubMed DOI
Gu H., Lou J., Wang H., Yang Y., Wu L., Wu J., Xu J. Biodegradation, Biosorption of Phenanthrene and Its Trans-Membrane Transport by Massilia sp. WF1 and Phanerochaete chrysosporium. Front. Microbiol. 2016;7:38. doi: 10.3389/fmicb.2016.00038. PubMed DOI PMC
Wemheuer F., Kaiser K., Karlovsky P., Daniel R., Vidal S., Wemheuer B. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 2017;7:40914. doi: 10.1038/srep40914. PubMed DOI PMC
Nakasaki K., Saito M., Suzuki N. Coprinellus curtus (Hitoyo-take) prevents diseases of vegetables caused by pathogenic fungi. FEMS Microbiol. Lett. 2007;275:286–291. doi: 10.1111/j.1574-6968.2007.00899.x. PubMed DOI
Duczek L.J. Biological control of common root rot in barley by Idriella bolleyi. Can. J. Plant Pathol. 1997;19:402–405. doi: 10.1080/07060669709501067. DOI
Lascaris D., Deacon J.W. Colonization of wheat roots from seed-applied spores of Idriella (Microdochium) bolleyi: A biocontrol agent of take-all. Biocontrol. Sci. Technol. 1991;1:229–240. doi: 10.1080/09583159109355202. DOI
Roux J., Wingfield M. Ceratocystis species: Emerging pathogens of non-native plantation Eucalyptus and Acacia species. South. For. J. For. Sci. 2009;71:115–120. doi: 10.2989/SF.2009.71.2.5.820. DOI
Tóth G., Montanarella L., Stolbovoy V., Máté F., Bódis K., Jones A., Panagos P., Van Liedekerke M., European Commission. Joint Research Centre et al. Soils of the European Union. Publications Office; Luxembourg: 2008.
Yao H., He Z., Wilson M.J., Campbell C.D. Microbial Biomass and Community Structure in a Sequence of Soils with Increasing Fertility and Changing Land Use. Microb. Ecol. 2000;40:223–237. doi: 10.1007/s002480000053. PubMed DOI
Afzal I., Shinwari Z.K., Sikandar S., Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019;221:36–49. doi: 10.1016/j.micres.2019.02.001. PubMed DOI
Gadhave K.R., Devlin P.F., Ebertz A., Ross A., Gange A.C. Soil Inoculation with Bacillus spp. Modifies Root Endophytic Bacterial Diversity, Evenness, and Community Composition in a Context-Specific Manner. Microb. Ecol. 2018;76:741–750. doi: 10.1007/s00248-018-1160-x. PubMed DOI PMC
Fang K., Bao Z.-S.-N., Chen L., Zhou J., Yang Z.-P., Dong X.-F., Zhang H.-B. Growth-promoting characteristics of potential nitrogen-fixing bacteria in the root of an invasive plant Ageratina adenophora. PeerJ. 2019;7:e7099. doi: 10.7717/peerj.7099. PubMed DOI PMC
Ramakrishna W., Yadav R., Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019;138:10–18. doi: 10.1016/j.apsoil.2019.02.019. DOI
Grall S., Manceau C. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine. AEM. 2003;69:1904–1912. doi: 10.1128/AEM.69.4.1904-1912.2003. PubMed DOI PMC
Adegoke A.A., Awolusi O.O., Stenström T.A. Organic Fertilizers: Public Health Intricacies. In: Larramendy M.L., Soloneski S., editors. Organic Fertilizers—From Basic Concepts to Applied Outcomes. InTech; Rijeka, Croatia: 2016.
Sharma M., Reynnells R. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers. In: Thakur K., editor. Preharvest Food Safety. American Society of Microbiology; Washington, DC, USA: 2018. pp. 159–175. PubMed
Solomon E.B., Yaron S., Matthews K.R. Transmission of Escherichia coli O157:H7 from Contaminated Manure and Irrigation Water to Lettuce Plant Tissue and Its Subsequent Internalization. AEM. 2002;68:397–400. doi: 10.1128/AEM.68.1.397-400.2002. PubMed DOI PMC
Szczech M., Kowalska B., Smolińska U., Maciorowski R., Oskiera M., Michalska A. Microbial quality of organic and conventional vegetables from Polish farms. Int. J. Food Microbiol. 2018;286:155–161. doi: 10.1016/j.ijfoodmicro.2018.08.018. PubMed DOI
Kljujev I., Raicevic V., Jovicic-Petrovic J., Vujovic B., Mirkovic M., Rothballer M. Listeria monocytogenes—Danger for health safety vegetable production. Microb. Pathog. 2018;120:23–31. doi: 10.1016/j.micpath.2018.04.034. PubMed DOI
Bacterial Diversity on Historical Audio-Visual Materials and in the Atmosphere of Czech Depositories
Factors Influencing the Fungal Diversity on Audio-Visual Materials