Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28814712
PubMed Central
PMC5559444
DOI
10.1038/s41598-017-07760-1
PII: 10.1038/s41598-017-07760-1
Knihovny.cz E-zdroje
- MeSH
- acetofenony metabolismus MeSH
- aerobióza MeSH
- Bacteria genetika metabolismus MeSH
- biodegradace MeSH
- cinnamáty metabolismus MeSH
- dichlorethyleny metabolismus MeSH
- fenethylalkohol metabolismus MeSH
- fenoly metabolismus MeSH
- fylogeneze MeSH
- hydroxybenzoáty metabolismus MeSH
- látky znečišťující půdu metabolismus MeSH
- mikrobiální společenstva genetika MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S MeSH
- rostliny metabolismus MeSH
- sekundární metabolismus MeSH
- toluen metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-dichloroethylene MeSH Prohlížeč
- acetofenony MeSH
- acetophenone MeSH Prohlížeč
- cinnamáty MeSH
- cinnamic acid MeSH Prohlížeč
- dichlorethyleny MeSH
- fenethylalkohol MeSH
- fenoly MeSH
- hydroxybenzoáty MeSH
- látky znečišťující půdu MeSH
- phenolic acid MeSH Prohlížeč
- RNA ribozomální 16S MeSH
- toluen MeSH
Cis-1,2-dichloroethylene (cDCE), which is a common hazardous compound, often accumulates during incomplete reductive dechlorination of higher chlorinated ethenes (CEs) at contaminated sites. Simple monoaromatics, such as toluene and phenol, have been proven to induce biotransformation of cDCE in microbial communities incapable of cDCE degradation in the absence of other carbon sources. The goal of this microcosm-based laboratory study was to discover non-toxic natural monoaromatic secondary plant metabolites (SPMEs) that could enhance cDCE degradation in a similar manner to toluene and phenol. Eight SPMEs were selected on the basis of their monoaromatic molecular structure and widespread occurrence in nature. The suitability of the SPMEs chosen to support bacterial growth and to promote cDCE degradation was evaluated in aerobic microbial cultures enriched from cDCE-contaminated soil in the presence of each SPME tested and cDCE. Significant cDCE depletions were achieved in cultures enriched on acetophenone, phenethyl alcohol, p-hydroxybenzoic acid and trans-cinnamic acid. 16S rRNA gene sequence analysis of each microbial community revealed ubiquitous enrichment of bacteria affiliated with the genera Cupriavidus, Rhodococcus, Burkholderia, Acinetobacter and Pseudomonas. Our results provide further confirmation of the previously stated secondary compound hypothesis that plant metabolites released into the rhizosphere can trigger biodegradation of environmental pollutants, including cDCE.
Zobrazit více v PubMed
Olaniran AO, Pillay D, Pillay B. Chloroethenes contaminants in the environment: Still a cause for concern. Afr. J. Biotechnol. 2004;3:675–682.
Agency for Toxic Substances and Disease Registry. Toxicological Profile for 1,2-Dichloroethene, https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=464&tid=82 (1996). PubMed
Tiehm A, Schmidt KR. Sequential anaerobic/aerobic biodegradation of chloroethenes–aspects of field application. Curr. Opin. Biotechnol. 2011;22:415–421. doi: 10.1016/j.copbio.2011.02.003. PubMed DOI
Smidt H, de Vos WM. Anaerobic microbial dehalogenation. Annu. Rev. Microbiol. 2004;58:43–73. doi: 10.1146/annurev.micro.58.030603.123600. PubMed DOI
Field JA, Sierra-Alvarez R. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev. Environ. Sci. Biotechnol. 2004;3:185–254. doi: 10.1007/s11157-004-4733-8. DOI
Bhatt P, Kumar MS, Mudliar S, Chakrabarti T. Biodegradation of chlorinated compounds—a review. Crit. Rev. Environ. Sci. Technol. 2007;37:165–198. doi: 10.1080/10643380600776130. DOI
Maymo-Gatell X, Chien Y-t, Gossett JM, Zinder SH. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 1997;276:1568–1571. doi: 10.1126/science.276.5318.1568. PubMed DOI
Cupples AM, Spormann AM, McCarty PL. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl. Environ. Microbiol. 2003;69:953–959. doi: 10.1128/AEM.69.2.953-959.2003. PubMed DOI PMC
Löffler FE, et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum. Chloroflexi. Int. J. Syst. Evol. Microbiol. 2013;63:625–635. doi: 10.1099/ijs.0.034926-0. PubMed DOI
Schmidt K, Tiehm A. Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Sci. Technol. 2008;58:1137–1145. doi: 10.2166/wst.2008.729. PubMed DOI
Kielhorn J, Melber C, Wahnschaffe U, Aitio A, Mangelsdorf I. Vinyl chloride: still a cause for concern. Environ. Health Perspect. 2000;108:579. doi: 10.1289/ehp.00108579. PubMed DOI PMC
Mattes TE, Alexander AK, Coleman NV. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol. Rev. 2010;34:445–475. doi: 10.1111/j.1574-6976.2010.00210.x. PubMed DOI
Coleman NV, Mattes TE, Gossett JM, Spain JC. Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl. Environ. Microbiol. 2002;68:2726–2730. doi: 10.1128/AEM.68.6.2726-2730.2002. PubMed DOI PMC
Mattes TE, et al. The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon-and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl. Environ. Microbiol. 2008;74:6405–6416. doi: 10.1128/AEM.00197-08. PubMed DOI PMC
Jennings LK, et al. Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas sp. strain JS666. Appl. Environ. Microbiol. 2009;75:3733–3744. doi: 10.1128/AEM.00031-09. PubMed DOI PMC
Olaniran AO, Pillay D, Pillay B. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa. Chemosphere. 2008;73:24–29. doi: 10.1016/j.chemosphere.2008.06.003. PubMed DOI
Bradley PM, Chapelle FH. Aerobic microbial mineralization of dichloroethene as sole carbon substrate. Environ. Sci. Technol. 2000;34:221–223. doi: 10.1021/es990785c. DOI
Schmidt KR, Augenstein T, Heidinger M, Ertl S, Tiehm A. Aerobic biodegradation of cis-1,2-dichloroethene as sole carbon source: Stable carbon isotope fractionation and growth characteristics. Chemosphere. 2010;78:527–532. doi: 10.1016/j.chemosphere.2009.11.033. PubMed DOI
Rojo F. Specificity at the end of the tunnel: understanding substrate length discrimination by the AlkB alkane hydroxylase. J. Bacteriol. 2005;187:19–22. doi: 10.1128/JB.187.1.19-22.2005. PubMed DOI PMC
Behrendorff JB, Huang W, Gillam EM. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Biochem. J. 2015;467:1–15. doi: 10.1042/BJ20141493. PubMed DOI
Arp DJ, Yeager CM, Hyman MR. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation. 2001;12:81–103. doi: 10.1023/A:1012089908518. PubMed DOI
Le NB, Coleman NV. Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Biodegradation. 2011;22:1095–1108. doi: 10.1007/s10532-011-9466-0. PubMed DOI
Fogel MM, Taddeo AR, Fogel S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 1986;51:720–724. PubMed PMC
Freedman DL, Danko A, Verce M. Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethenes. Water Sci. Technol. 2001;43:333–340. PubMed
Frascari D, Kim Y, Dolan ME, Semprini L. A kinetic study of aerobic propane uptake and cometabolic degradation of chloroform, cis-dichloroethylene and trichloroetylene in microcosms with groundwater/aquifer solids. Water Air Soil Pollut. 2003;3:285–298. doi: 10.1023/A:1023909229768. DOI
Kim Y, Arp DJ, Semprini L. Chlorinated solvent cometabolism by butane-grown mixed culture. J. Environ. Engineer. 2000;126:934–942. doi: 10.1061/(ASCE)0733-9372(2000)126:10(934). DOI
Ensign S, Hyman M, Arp D. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 1992;58:3038–3046. PubMed PMC
Vannelli T, Logan M, Arciero DM, Hooper AB. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 1990;56:1169–1171. PubMed PMC
Verce MF, Gunsch CK, Danko AS, Freedman DL. Cometabolism of cis-1,2-dichloroethene by aerobic cultures grown on vinyl chloride as the primary substrate. Environ. Sci. Technol. 2002;36:2171–2177. doi: 10.1021/es011220v. PubMed DOI
Tiehm A, Schmidt KR, Pfeifer B, Heidinger M, Ertl S. Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1,2-dichloroethene and vinyl chloride. Water Res. 2008;42:2431–2438. doi: 10.1016/j.watres.2008.01.029. PubMed DOI
Hopkins GD, McCarty PL. Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ. Sci. Technol. 1995;29:1628–1637. doi: 10.1021/es00006a029. PubMed DOI
Elango V, Kurtz HD, Freedman DL. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates. Chemosphere. 2011;84:247–253. doi: 10.1016/j.chemosphere.2011.04.007. PubMed DOI
Semprini L. Strategies for the aerobic co-metabolism of chlorinated solvents. Curr. Opin. Biotechnol. 1997;8:296–308. doi: 10.1016/S0958-1669(97)80007-9. PubMed DOI
Bacilio-Jiménez M, et al. Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil. 2003;249:271–277. doi: 10.1023/A:1022888900465. DOI
Bais, H. P., Broeckling, C. D. & Vivanco, J. M. in Secondary metabolites in soil ecology 241–252 (Springer, 2008).
Shukla KP, et al. Nature and role of root exudates: efficacy in bioremediation. Afr. J. Biotechnol. 2011;10:9717–9724.
Jha P, Panwar J, Jha P. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int. J. Environ. Sci. Technol. 2015;12:789–802. doi: 10.1007/s13762-014-0515-1. DOI
Singer AC, Thompson IP, Bailey MJ. The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation. Curr. Opin. Microbiol. 2004;7:239–244. doi: 10.1016/j.mib.2004.04.007. PubMed DOI
Singer AC, Crowley DE, Thompson IP. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 2003;21:123–130. doi: 10.1016/S0167-7799(02)00041-0. PubMed DOI
Musilová L, Rídl J, Polívková M, Macek T, Uhlík O. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int. J. Molec. Sci. 2016;17:1205. doi: 10.3390/ijms17081205. PubMed DOI PMC
Shim H, Ryoo D, Barbieri P, Wood T. Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 2001;56:265–269. doi: 10.1007/s002530100650. PubMed DOI
Futamata H, Harayama S, Watanabe K. Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl. Microbiol. Biotechnol. 2001;55:248–253. doi: 10.1007/s002530000500. PubMed DOI
Rui L, Cao L, Chen W, Reardon KF, Wood TK. Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase. J. Biol. Chem. 2004;279:46810–46817. doi: 10.1074/jbc.M407466200. PubMed DOI
Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ. Rhizoremediation: a beneficial plant-microbe interaction. Molec. Plant-Microbe Interact. 2004;17:6–15. doi: 10.1094/MPMI.2004.17.1.6. PubMed DOI
Pham TT, Pino Rodriguez NJ, Hijri M, Sylvestre M. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A. PLoS One. 2015;10:e0126033. doi: 10.1371/journal.pone.0126033. PubMed DOI PMC
Toussaint J-P, Pham T, Barriault D, Sylvestre M. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl. Microbiol. Biotechnol. 2012;95:1589–1603. doi: 10.1007/s00253-011-3824-z. PubMed DOI
Siciliano SD, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 2001;67:2469–2475. doi: 10.1128/AEM.67.6.2469-2475.2001. PubMed DOI PMC
Powell CL, Agrawal A. Biodegradation of trichloroethene by methane oxidizers naturally associated with wetland plant roots. Wetlands. 2011;31:45–52. doi: 10.1007/s13157-010-0134-7. PubMed DOI
Suttinun O, Lederman PB, Luepromchai E. Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil. Songklanakarin J. Sci. Technol. 2004;26:131–142.
Gilbert ES, Crowley DE. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 1997;63:1933–1938. PubMed PMC
Alvarez-Cohen L, Speitel GE., Jr. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation. 2001;12:105–126. doi: 10.1023/A:1012075322466. PubMed DOI
Romantschuk M, et al. Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ. Pollut. 2000;107:179–185. doi: 10.1016/S0269-7491(99)00136-0. PubMed DOI
Bacosa H, Suto K, Inoue C. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeter. Biodeg. 2010;64:702–710. doi: 10.1016/j.ibiod.2010.03.008. DOI
Frascari D, et al. A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1. Biochem. Engineer. J. 2008;42:139–147. doi: 10.1016/j.bej.2008.06.011. DOI
Larkin MJ, Kulakov LA, Allen CC. Biodegradation and Rhodococcus–masters of catabolic versatility. Curr. Opin. Biotechnol. 2005;16:282–290. doi: 10.1016/j.copbio.2005.04.007. PubMed DOI
Aranda C, Godoy F, Becerra J, Barra R, Martínez M. Aerobic secondary utilization of a non-growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32. Biodegradation. 2003;14:265–274. doi: 10.1023/A:1024752605059. PubMed DOI
Frascari D, et al. Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents. Biodegradation. 2014;25:337–350. doi: 10.1007/s10532-013-9664-z. PubMed DOI
Imfeld G, et al. Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater. FEMS Microbiol. Ecol. 2010;72:74–88. doi: 10.1111/j.1574-6941.2009.00825.x. PubMed DOI
Clingenpeel SR, Moan JL, McGrath DM, Hungate BA, Watwood ME. Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases. Front. Microbiol. 2012;3:63. doi: 10.3389/fmicb.2012.00063. PubMed DOI PMC
Lang E, Burghartz M, Spring S, Swiderski J, Spröer C. Pseudomonas benzenivorans sp. nov. and Pseudomonas saponiphila sp. nov., represented by xenobiotics degrading type strains. Curr. Microbiol. 2010;60:85–91. doi: 10.1007/s00284-009-9507-7. PubMed DOI
Ha C, et al. Natural gradient drift tests for assessing the feasibility of in situ aerobic cometabolism of trichloroethylene and evaluating the microbial community change. Water Air Soil Pollut. 2011;219:353–364. doi: 10.1007/s11270-010-0712-6. DOI
Strauch, E., Beck, S. & Appel, B. in Predatory Prokaryotes: Biology, Ecology and Evolution (ed Edouard Jurkevitch) 131–152 (Springer Berlin Heidelberg, 2007).
Fondi M, et al. The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3. Res. Microbiol. 2013;164:439–449. doi: 10.1016/j.resmic.2013.03.003. PubMed DOI
Pepi M, Minacci A, Di Cello F, Baldi F, Fani R. Long-term analysis of diesel fuel consumption in a co-culture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis. Antonie Van Leeuwenhoek. 2003;83:3–9. doi: 10.1023/A:1022930421705. PubMed DOI
Leewis MC, Uhlík O, Leigh MB. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil. Sci. Reports. 2016;6:22145. doi: 10.1038/srep22145. PubMed DOI PMC
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. PubMed
Walters W, et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems. 2016;1:e00009–00015. doi: 10.1128/mSystems.00009-15. PubMed DOI PMC
Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Cole JR, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC
R Development Core Team. R: A language and environment for statistical computing (2013).
McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods. 2013;10:1200–1202. doi: 10.1038/nmeth.2658. PubMed DOI PMC
Bibi F, Ali Z. Measurement of diversity indices of avian communities at Taunsa Barrage Wildlife Sanctuary, Pakistan. J. Anim. Plant Sci. 2013;23:469–474.
Hill TC, Walsh KA, Harris JA, Moffett BF. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 2003;43:1–11. doi: 10.1111/j.1574-6941.2003.tb01040.x. PubMed DOI