Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P20 GM103395
NIGMS NIH HHS - United States
P20 RR016466
NCRR NIH HHS - United States
5P20RR016466
NCRR NIH HHS - United States
PubMed
26915282
PubMed Central
PMC4768254
DOI
10.1038/srep22145
PII: srep22145
Knihovny.cz E-zdroje
- MeSH
- aromatické uhlovodíky metabolismus MeSH
- Bacteria genetika metabolismus MeSH
- benzoáty metabolismus MeSH
- bifenylové sloučeniny metabolismus MeSH
- biodegradace MeSH
- látky znečišťující půdu metabolismus MeSH
- nebezpečný odpad MeSH
- polychlorované bifenyly metabolismus MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- znečištění životního prostředí * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- aromatické uhlovodíky MeSH
- benzoáty MeSH
- bifenylové sloučeniny MeSH
- biphenyl MeSH Prohlížeč
- látky znečišťující půdu MeSH
- nebezpečný odpad MeSH
- polychlorované bifenyly MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing (13)C-biphenyl (unchlorinated analogue of PCBs) and/or (13)C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.
Zobrazit více v PubMed
Singer A. C., Gilbert E. S., Luepromchai E. & Crowley D. E. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl. Microbiol. Biotechnol. 54, 838–843 (2000). PubMed
Macková M. et al. In Geomicrobiology: Molecular and Environmental Perspective (eds. Loy A., Mandl M. & Barton L. L.) 347–366 (Springer, 2010).
Leewis M.-C., Reynolds C. M. & Leigh M. B. Long-term Effects of Nutrient Addition and Phytoremediation on Diesel and Crude Oil Contaminated Soils in subarctic Alaska. Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2013.08.011 (2013). PubMed DOI PMC
Aken B. Van, Correa P. A. & Schnoor J. L. Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environ. Sci. Technol. 44, 2767–2776 (2010). PubMed PMC
Koubek J., Mackova M., Macek T. & Uhlik O. Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. Chemosphere 93, 1548–55 (2013). PubMed
Pieper D. H. & Seeger M. Bacterial metabolism of polychlorinated biphenyls. J. Mol. Microbiol. Biotechnol. 15, 121–38 (2008). PubMed
Francova K., Macková M., Macek T. & Sylvestre M. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants. Environ. Pollut. 127, 41–48 (2004). PubMed
Pieper D. H. Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67, 170–91 (2005). PubMed
Harwood C. S. & Parales R. E. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553–90 (1996). PubMed
Furukawa K., Tomizuka N. & Kamibayashi A. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38, 301–310 (1979). PubMed PMC
Bedard D. L. & Haberl M. L. Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20, 87–102 (1990). PubMed
Gilbert E. S. & Crowley D. E. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. Strain B1B. Appl. Environ. Microbiol. 63, 1933–1938 (1997). PubMed PMC
Tillmann S., Stroempl C., Timmis K. N. & Abraham W.-R. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol. Ecol. 52, 207–217 (2005). PubMed
Kim S. & Picardal F. Microbial Growth on Dichlorobiphenyls Chlorinated on Both Rings as a Sole Carbon and Energy Source. Appl. Environ. Microbiol. 67, 1953–1955 (2001). PubMed PMC
Ohtsubo Y., Nagata Y., Kimbara K., Takagi M. & Ohta A. Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. Gene 256, 223–8 (2000). PubMed
Uhlik O. et al. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 97, 9245–9256 (2013). PubMed
Kurzawova V. et al. Plant–microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. N. Biotechnol. 30, 15–22 (2012). PubMed
Leigh M. B., Fletcher J. S., Fu X. & Schmitz F. J. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36, 1579–83 (2002). PubMed
Pham T. T. M., Tu Y. & Sylvestre M. Remarkable Ability of Pandoraea pnomenusa B356 Biphenyl Dioxygenase To Metabolize Simple Flavonoids. Appl. Environ. Microbiol. 78, 3560–3570 (2012). PubMed PMC
Chen Y. & Murrell J. C. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18, 157–163 (2010). PubMed
Neufeld J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007). PubMed
Uhlik O. et al. Stable isotope probing in the metagenomics era: A bridge towards improved bioremediation. Biotechnol. Adv. 31, 154–165 (2013). PubMed PMC
Leigh M. B. et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1, 134–48 (2007). PubMed
He R. et al. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14, 1403–19 (2012). PubMed
Bell T. H. et al. Identification of Nitrogen-Incorporating Bacteria in Petroleum-Contaminated Arctic Soils Using 15N DNA-SIP and Pyrosequencing. Appl. Environ. Microbiol. 77, 4163–4171 (2011). PubMed PMC
Uhlik O. et al. Identification of Bacteria Utilizing Biphenyl, Benzoate, and Naphthalene in Long-Term Contaminated Soil. PLoS One 7, e40653 (2012). PubMed PMC
DeRito C. M., Pumphrey G. M. & Madsen E. L. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl. Environ. Microbiol. 71, 7858–65 (2005). PubMed PMC
Dumont M. G. & Murrell J. C. Innovation: Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005). PubMed
Hernandez B. S., Koh S. C., Chial M. & Focht D. D. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8, 153–158 (1997).
Leigh M. B. et al. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microbiol. 72, 2331–42 (2006). PubMed PMC
Bailey R. E., Gonsior S. J. & Rhinehart W. L. Biodegradation of the monochlorobiphenyls and biphenyl in river water. Environ. Sci. Technol. 17, 617–621 (1983). PubMed
Fierer N., Bradford M. A. & Jackson R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007). PubMed
Elliott D. R., Thomas A. D., Hoon S. R. & Sen R. Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers. Conserv. 23, 1709–1733 (2014).
Erickson B. D. & Mondello F. J. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J. Bacteriol. 174, 2903–2912 (1992). PubMed PMC
Glick B. R. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28, 367–74 (2010). PubMed
Männistö M. K., Rawat S., Starovoytov V. & Häggblom M. M. Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int. J. Syst. Evol. Microbiol. 61, 1823–1828 (2011). PubMed
Eichorst S. A., Breznak J. A. & Schmidt T. M. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. doi: 10.1128/AEM.02140-06 (2007). PubMed DOI PMC
Thorenoor N., Kim Y.-H., Lee C., Yu M.-H. & Engesser K.-H. A previously uncultured, paper mill Propionibacterium is able to degrade O-aryl alkyl ethers and various aromatic hydrocarbons. Chemosphere 75, 1287–1293 (2009). PubMed
Salter S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014). PubMed PMC
Singer A. C., Jury W., Luepromchai E., Yahng C. S. & Crowley D. E. Contribution of earthworms to PCB bioremediation. Soil Biol. Biochem. 33, 765–776 (2001).
Eilers K. G., Lauber C. L., Knight R. & Fierer N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).
Pumphrey G. M. & Madsen E. L. Field-based stable isotope probing reveals the identities of benzoic acid-metabolizing microorganisms and their in situ growth in agricultural soil. Appl. Environ. Microbiol. 74, 4111–8 (2008). PubMed PMC
Pianka E. On r-and K-selection. Am. Nat. 104, 592–597 (1970).
Margesin R., Hämmerle M. & Tscherko D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microb. Ecol. 53, 259–269 (2007). PubMed
Manzoni S., Taylor P., Richter A., Porporato A. & Agren G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012). PubMed
Margesin R. & Schinner F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56, 650–663 (2001). PubMed
Sharak Genthner B. R., Price W. A. & Pritchard P. H. Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55, 1466–1471 (1989). PubMed PMC
Slater H., Gouin T. & Leigh M. B. Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84, 199–206 (2011). PubMed PMC
Wald J. et al. Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment. Front. Microbiol. 6, 1268 (2015). PubMed PMC
Uhlik O. et al. Biphenyl-Metabolizing Bacteria in the Rhizosphere of Horseradish and Bulk Soil Contaminated by Polychlorinated Biphenyls as Revealed by Stable Isotope Probing. Appl. Environ. Microbiol. 75, 6471–6477 (2009). PubMed PMC
He R. et al. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J. 6, 1937–48 (2012). PubMed PMC
He R. et al. Shifts in identity and activity of methanotrophs in Arctic Lake sediments in response to temperature changes. Appl. Environ. Microbiol. doi: 10.1128/AEM.00853-12 (2012). PubMed DOI PMC
Engelbrektson A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010). PubMed
Schloss P. D., Gevers D. & Westcott S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6, e27310 (2011). PubMed PMC
Meyer F. et al. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008). PubMed PMC
Iwai S. et al. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J. 4, 279–285 (2010). PubMed PMC
Strejcek M., Wang Q., Ridl J. & Uhlik O. Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences. Front. Microbiol. 6, 1267 (2015). PubMed PMC