• This record comes from PubMed

Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil

. 2016 Feb 26 ; 6 () : 22145. [epub] 20160226

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
P20 GM103395 NIGMS NIH HHS - United States
P20 RR016466 NCRR NIH HHS - United States
5P20RR016466 NCRR NIH HHS - United States

Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing (13)C-biphenyl (unchlorinated analogue of PCBs) and/or (13)C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.

See more in PubMed

Singer A. C., Gilbert E. S., Luepromchai E. & Crowley D. E. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl. Microbiol. Biotechnol. 54, 838–843 (2000). PubMed

Macková M. et al. In Geomicrobiology: Molecular and Environmental Perspective (eds. Loy A., Mandl M. & Barton L. L.) 347–366 (Springer, 2010).

Leewis M.-C., Reynolds C. M. & Leigh M. B. Long-term Effects of Nutrient Addition and Phytoremediation on Diesel and Crude Oil Contaminated Soils in subarctic Alaska. Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2013.08.011 (2013). PubMed DOI PMC

Aken B. Van, Correa P. A. & Schnoor J. L. Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environ. Sci. Technol. 44, 2767–2776 (2010). PubMed PMC

Koubek J., Mackova M., Macek T. & Uhlik O. Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. Chemosphere 93, 1548–55 (2013). PubMed

Pieper D. H. & Seeger M. Bacterial metabolism of polychlorinated biphenyls. J. Mol. Microbiol. Biotechnol. 15, 121–38 (2008). PubMed

Francova K., Macková M., Macek T. & Sylvestre M. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants. Environ. Pollut. 127, 41–48 (2004). PubMed

Pieper D. H. Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67, 170–91 (2005). PubMed

Harwood C. S. & Parales R. E. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553–90 (1996). PubMed

Furukawa K., Tomizuka N. & Kamibayashi A. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38, 301–310 (1979). PubMed PMC

Bedard D. L. & Haberl M. L. Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20, 87–102 (1990). PubMed

Gilbert E. S. & Crowley D. E. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. Strain B1B. Appl. Environ. Microbiol. 63, 1933–1938 (1997). PubMed PMC

Tillmann S., Stroempl C., Timmis K. N. & Abraham W.-R. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol. Ecol. 52, 207–217 (2005). PubMed

Kim S. & Picardal F. Microbial Growth on Dichlorobiphenyls Chlorinated on Both Rings as a Sole Carbon and Energy Source. Appl. Environ. Microbiol. 67, 1953–1955 (2001). PubMed PMC

Ohtsubo Y., Nagata Y., Kimbara K., Takagi M. & Ohta A. Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. Gene 256, 223–8 (2000). PubMed

Uhlik O. et al. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 97, 9245–9256 (2013). PubMed

Kurzawova V. et al. Plant–microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. N. Biotechnol. 30, 15–22 (2012). PubMed

Leigh M. B., Fletcher J. S., Fu X. & Schmitz F. J. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36, 1579–83 (2002). PubMed

Pham T. T. M., Tu Y. & Sylvestre M. Remarkable Ability of Pandoraea pnomenusa B356 Biphenyl Dioxygenase To Metabolize Simple Flavonoids. Appl. Environ. Microbiol. 78, 3560–3570 (2012). PubMed PMC

Chen Y. & Murrell J. C. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18, 157–163 (2010). PubMed

Neufeld J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007). PubMed

Uhlik O. et al. Stable isotope probing in the metagenomics era: A bridge towards improved bioremediation. Biotechnol. Adv. 31, 154–165 (2013). PubMed PMC

Leigh M. B. et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1, 134–48 (2007). PubMed

He R. et al. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14, 1403–19 (2012). PubMed

Bell T. H. et al. Identification of Nitrogen-Incorporating Bacteria in Petroleum-Contaminated Arctic Soils Using 15N DNA-SIP and Pyrosequencing. Appl. Environ. Microbiol. 77, 4163–4171 (2011). PubMed PMC

Uhlik O. et al. Identification of Bacteria Utilizing Biphenyl, Benzoate, and Naphthalene in Long-Term Contaminated Soil. PLoS One 7, e40653 (2012). PubMed PMC

DeRito C. M., Pumphrey G. M. & Madsen E. L. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl. Environ. Microbiol. 71, 7858–65 (2005). PubMed PMC

Dumont M. G. & Murrell J. C. Innovation: Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005). PubMed

Hernandez B. S., Koh S. C., Chial M. & Focht D. D. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8, 153–158 (1997).

Leigh M. B. et al. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microbiol. 72, 2331–42 (2006). PubMed PMC

Bailey R. E., Gonsior S. J. & Rhinehart W. L. Biodegradation of the monochlorobiphenyls and biphenyl in river water. Environ. Sci. Technol. 17, 617–621 (1983). PubMed

Fierer N., Bradford M. A. & Jackson R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007). PubMed

Elliott D. R., Thomas A. D., Hoon S. R. & Sen R. Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers. Conserv. 23, 1709–1733 (2014).

Erickson B. D. & Mondello F. J. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J. Bacteriol. 174, 2903–2912 (1992). PubMed PMC

Glick B. R. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28, 367–74 (2010). PubMed

Männistö M. K., Rawat S., Starovoytov V. & Häggblom M. M. Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int. J. Syst. Evol. Microbiol. 61, 1823–1828 (2011). PubMed

Eichorst S. A., Breznak J. A. & Schmidt T. M. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. doi: 10.1128/AEM.02140-06 (2007). PubMed DOI PMC

Thorenoor N., Kim Y.-H., Lee C., Yu M.-H. & Engesser K.-H. A previously uncultured, paper mill Propionibacterium is able to degrade O-aryl alkyl ethers and various aromatic hydrocarbons. Chemosphere 75, 1287–1293 (2009). PubMed

Salter S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014). PubMed PMC

Singer A. C., Jury W., Luepromchai E., Yahng C. S. & Crowley D. E. Contribution of earthworms to PCB bioremediation. Soil Biol. Biochem. 33, 765–776 (2001).

Eilers K. G., Lauber C. L., Knight R. & Fierer N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).

Pumphrey G. M. & Madsen E. L. Field-based stable isotope probing reveals the identities of benzoic acid-metabolizing microorganisms and their in situ growth in agricultural soil. Appl. Environ. Microbiol. 74, 4111–8 (2008). PubMed PMC

Pianka E. On r-and K-selection. Am. Nat. 104, 592–597 (1970).

Margesin R., Hämmerle M. & Tscherko D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microb. Ecol. 53, 259–269 (2007). PubMed

Manzoni S., Taylor P., Richter A., Porporato A. & Agren G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012). PubMed

Margesin R. & Schinner F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56, 650–663 (2001). PubMed

Sharak Genthner B. R., Price W. A. & Pritchard P. H. Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55, 1466–1471 (1989). PubMed PMC

Slater H., Gouin T. & Leigh M. B. Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84, 199–206 (2011). PubMed PMC

Wald J. et al. Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment. Front. Microbiol. 6, 1268 (2015). PubMed PMC

Uhlik O. et al. Biphenyl-Metabolizing Bacteria in the Rhizosphere of Horseradish and Bulk Soil Contaminated by Polychlorinated Biphenyls as Revealed by Stable Isotope Probing. Appl. Environ. Microbiol. 75, 6471–6477 (2009). PubMed PMC

He R. et al. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J. 6, 1937–48 (2012). PubMed PMC

He R. et al. Shifts in identity and activity of methanotrophs in Arctic Lake sediments in response to temperature changes. Appl. Environ. Microbiol. doi: 10.1128/AEM.00853-12 (2012). PubMed DOI PMC

Engelbrektson A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010). PubMed

Schloss P. D., Gevers D. & Westcott S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6, e27310 (2011). PubMed PMC

Meyer F. et al. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008). PubMed PMC

Iwai S. et al. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J. 4, 279–285 (2010). PubMed PMC

Strejcek M., Wang Q., Ridl J. & Uhlik O. Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences. Front. Microbiol. 6, 1267 (2015). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...