An in vivo cointegrate of two plasmids from incompatibility group X
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
3021599
DOI
10.1007/bf02926948
Knihovny.cz E-zdroje
- MeSH
- deoxyribonukleasa BamHI MeSH
- deoxyribonukleasa EcoRI MeSH
- DNA bakterií analýza izolace a purifikace ultrastruktura MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- elektronová mikroskopie MeSH
- Escherichia coli genetika MeSH
- plazmidy * MeSH
- rekombinace genetická MeSH
- replikace DNA MeSH
- restrikční enzymy MeSH
- transpozibilní elementy DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deoxyribonukleasa BamHI MeSH
- deoxyribonukleasa EcoRI MeSH
- DNA bakterií MeSH
- restrikční enzymy MeSH
- transpozibilní elementy DNA MeSH
Formation of a recombinant plasmid designated pNH603 was observed when two plasmids from incompatibility group X, the multicopy plasmid pNH602 (a higher-copy-number deletion derivative of R6K) and the oligocopy plasmid R485, coexisted in a single Escherichia coli cell. According to its size and its restriction endonuclease cleavage pattern, plasmid pNH603 is a true cointegrate of pNH602 and R485. An insertion-sequence-like element coming from plasmid R485 is supposed to mediate the fusion of both replicons. The pNH603 copy number (1-2 per chromosome) indicates that the mechanism of replication of the low-copy-number plasmid is dominant in this cointegrate. No dissociation of pNH603 to parental plasmids was observed even in E. coli K-12 recA+ cells. On the other hand, deletion derivatives of four size classes originate from pNH603 in both recA+ and recA hosts. A miniplasmid designated pNH604, a representative of the most frequent 7 Mg/mol size class, was found, in a low number of copies per host chromosome.
Zobrazit více v PubMed
J Mol Biol. 1982 Aug 25;159(4):557-80 PubMed
Anal Biochem. 1979 Dec;100(2):319-23 PubMed
Plasmid. 1978 Sep;1(4):584-8 PubMed
Folia Microbiol (Praha). 1982;27(2):138-41 PubMed
J Gen Microbiol. 1982 Mar;128(3):529-37 PubMed
Nucleic Acids Res. 1977;4(5):1465-82 PubMed
J Mol Biol. 1983 Mar 25;165(1):191-5 PubMed
Plasmid. 1978 Sep;1(4):480-91 PubMed
J Mol Biol. 1982 Jan 15;154(2):245-72 PubMed
J Virol. 1974 Nov;14(5):1235-44 PubMed
J Bacteriol. 1976 Sep;127(3):1529-37 PubMed
Mol Gen Genet. 1978 Feb 16;159(2):131-41 PubMed
Plasmid. 1981 Jan;5(1):2-9 PubMed
Folia Microbiol (Praha). 1983;28(5):345-52 PubMed
Microbiol Rev. 1983 Jun;47(2):180-230 PubMed
Gene. 1980 Sep;10(4):329-38 PubMed
J Bacteriol. 1977 Aug;131(2):413-20 PubMed
J Bacteriol. 1977 Dec;132(3):986-95 PubMed
Cell. 1980 Jul;20(3):579-95 PubMed
J Bacteriol. 1980 Sep;143(3):1295-306 PubMed
Nucleic Acids Res. 1978 Aug;5(8):2721-8 PubMed
J Gen Microbiol. 1972 Oct;72(3):543-52 PubMed
J Bacteriol. 1979 Aug;139(2):515-9 PubMed
J Mol Biol. 1968 Feb 14;31(3):519-40 PubMed
Proc Natl Acad Sci U S A. 1982 Jan;79(2):277-81 PubMed
J Bacteriol. 1980 Sep;143(3):1466-70 PubMed
Genetika. 1982;18(8):1263-70 PubMed
J Bacteriol. 1973 May;114(2):577-91 PubMed
Folia Microbiol (Praha). 1985;30(5):407-13 PubMed
Proc Natl Acad Sci U S A. 1982 Aug;79(15):4530-4 PubMed
J Mol Biol. 1984 May 25;175(3):263-84 PubMed
Folia Microbiol (Praha). 1977;22(5):353-9 PubMed