Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26635739
PubMed Central
PMC4656815
DOI
10.3389/fmicb.2015.01267
Knihovny.cz E-zdroje
- Klíčová slova
- FrameBot, Frameshift, amplicon sequencing, benzoate dioxygenase, biphenyl dioxygenase, functional genes,
- Publikační typ
- časopisecké články MeSH
Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frameshifts (FS). Genes encoding for alpha subunits of biphenyl (bphA) and benzoate (benA) dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 44% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of maximum expected error filtering and single linkage pre-clustering proved to be the most efficient read processing approach. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study or available at https://github.com/strejcem/FBdenovo. The tool was also implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/.
Zobrazit více v PubMed
Barriault D., Lepine F., Mohammadi M., Milot S., Leberre N., Sylvestre M. (2004). Revisiting the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase toward 2,2′-dichlorobiphenyl and 2,3,2′,3′-tetrachlorobiphenyl. J. Biol. Chem. 279 47489–47496. 10.1074/jbc.M406808200 PubMed DOI
Barriault D., Sylvestre M. (2004). Evolution of the biphenyl dioxygenase BphA from Burkholderia xenovorans LB400 by random mutagenesis of multiple sites in region III. J. Biol. Chem. 279 47480–47488. 10.1074/jbc.M406805200 PubMed DOI
Bopp L. H. (1986). Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Indus. Microbiol. 1 23–29. 10.1007/BF01569413 DOI
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST+: architecture and applications. BMC Bioinform. 10:421 10.1186/1471-2105-10-421 PubMed DOI PMC
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Chang H.-K., Mohseni P., Zylstra G. J. (2003). Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J. Bacteriol. 185 5871–5881. 10.1128/jb.185.19.5871-5881.2003 PubMed DOI PMC
Cole J. R., Wang Q., Fish J. A., Chai B., Mcgarrell D. M., Sun Y., et al. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42 D633–D642. 10.1093/nar/gkt1244 PubMed DOI PMC
Denonfoux J., Parisot N., Dugat-Bony E., Biderre-Petit C., Boucher D., Morgavi D. P., et al. (2013). Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Res. 20 185–196. 10.1093/dnares/dst001 PubMed DOI PMC
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC
Fish J. A., Chai B., Wang Q., Sun Y., Brown C. T., Tiedje J. M., et al. (2013). FunGene: the Functional Gene Pipeline and Repository. Front. Microbiol. 4:291 10.3389/fmicb.2013.00291 PubMed DOI PMC
Furukawa K., Hayase N., Taira K., Tomizuka N. (1989). Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J. Bacteriol. 171 5467–5472. PubMed PMC
Furukawa K., Suenaga H., Goto M. (2004). Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186 5189–5196. 10.1128/JB.186.16.5189-5196.2004 PubMed DOI PMC
Furusawa Y., Nagarajan V., Tanokura M., Masai E., Fukuda M., Senda T. (2004). Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J. Mol. Biol. 342 1041–1052. 10.1016/j.jmb.2004.07.062 PubMed DOI
Gaspar J. M., Thomas W. K. (2013). Assessing the consequences of denoising marker-based metagenomic data. PLoS ONE 8:e60458 10.1371/journal.pone.0060458 PubMed DOI PMC
Ge Y., Eltis L. D. (2003). Characterization of hybrid toluate and benzoate dioxygenases. J. Bacteriol. 185 5333–5341. 10.1128/jb.185.18.5333-5341.2003 PubMed DOI PMC
Ge Y., Vaillancourt F. H., Agar N. Y. R., Eltis L. D. (2002). Reactivity of toluate dioxygenase with substituted benzoates and dioxygen. J. Bacteriol. 184 4096–4103. 10.1128/jb.184.15.4096-4103.2002 PubMed DOI PMC
Hurtubise Y., Barriault D., Powlowski J., Sylvestre M. (1995). Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components. J. Bacteriol. 177 6610–6618. PubMed PMC
Huse S. M., Welch D. M., Morrison H. G., Sogin M. L. (2010). Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12 1889–1898. 10.1111/j.1462-2920.2010.02193.x PubMed DOI PMC
Iwai S., Chai B., Sul W. J., Cole J. R., Hashsham S. A., Tiedje J. M. (2010). Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J. 4 279–285. 10.1038/ismej.2009.104 PubMed DOI PMC
Kumamaru T., Suenaga H., Mitsuoka M., Watanabe T., Furukawa K. (1998). Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16 663–666. 10.1038/nbt0798-663 PubMed DOI
Kumar P., Gomez-Gil L., Mohammadi M., Sylvestre M., Eltis L. D., Bolin J. T. (2011). Anaerobic crystallization and initial X-ray diffraction data of biphenyl 2,3-dioxygenase from Burkholderia xenovorans LB400: addition of agarose improved the quality of the crystals. Acta Crystallograph. Sect. F 67 59–63. 10.1107/S1744309110043393 PubMed DOI PMC
Kurzawová V., Štursa P., Uhlík O., Norková K., Strohalm M., Lipov J., et al. (2012). Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. New Biotechnol. 30 15–22. 10.1016/j.nbt.2012.06.004 PubMed DOI
Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., et al. (1995). Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61 2079–2085. PubMed PMC
Mohammadi M., Sylvestre M. (2005). Resolving the profile of metabolites generated during oxidation of dibenzofuran and chlorodibenzofurans by the biphenyl catabolic pathway enzymes. Chem. Biol. 12 835–846. 10.1016/j.chembiol.2005.05.017 PubMed DOI
Mondello F. J., Turcich M. P., Lobos J. H., Erickson B. D. (1997). Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl. Environ. Microbiol. 63 3096–3103. PubMed PMC
Nam J. W., Nojiri H., Yoshida T., Habe H., Yamane H., Omori T. (2001). New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci. Biotechnol. Biochem. 65 254–263. 10.1271/bbb.65.254 PubMed DOI
Pavlíková D., Macek T., Macková M., Pavlík M. (2007). Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int. J. Phytoremediation 9 71–78. 10.1080/15226510601139433 PubMed DOI
Penton C. R., Johnson T. A., Quensen J. F., Iwai S., Cole J. R., Tiedje J. M. (2013). Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter. Front. Microbiol. 4:279 10.3389/fmicb.2013.00279 PubMed DOI PMC
Pham T. T. M., Sylvestre M. (2013). Has the bacterial biphenyl catabolic pathway evolved primarily to degrade biphenyl? The diphenylmethane case. J. Bacteriol. 195 3563–3574. 10.1128/jb.00161-13 PubMed DOI PMC
Pham T. T. M., Tu Y., Sylvestre M. (2012). Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl. Environ. Microbiol. 78 3560–3570. 10.1128/aem.00225-12 PubMed DOI PMC
Pieper D. H., Seeger M. (2008). Bacterial metabolism of polychlorinated biphenyls. J. Mol. Microbiol. Biotechnol. 15 121–138. 10.1159/000121325 PubMed DOI
Quince C., Lanzén A., Curtis T. P., Davenport R. J., Hall N., Head I. M., et al. (2009). Accurate determination of microbial diversity from 454 pyrosequencing data. Nat. Methods 6 639–641. 10.1038/nmeth.1361 PubMed DOI
Quince C., Lanzen A., Davenport R. J., Turnbaugh P. J. (2011). Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38 10.1186/1471-2105-12-38 PubMed DOI PMC
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ryšlavá E., Krejčjk Z., Macek T., Nováková H., Demnerová K., Macková M. (2003). Study of PCB degradation in real contaminated soil. Fresenius Environ. Bull. 12 296–301.
Schloss P. D., Gevers D., Westcott S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310 10.1371/journal.pone.0027310 PubMed DOI PMC
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-49 PubMed DOI PMC
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC
Tang S., Antonov I., Borodovsky M. (2013). MetaGeneTack: ab initio detection of frameshifts in metagenomic sequences. Bioinformatics 29 114–116. 10.1093/bioinformatics/bts636 PubMed DOI PMC
Uhlík O., Ječná K., Macková M., Vlček C., Hroudová M., Demnerová K., et al. (2009). Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75 6471–6477. 10.1128/AEM.00466-09 PubMed DOI PMC
Uhlík O., Leewis M. C., Strejček M., Musilová L., Macková M., Leigh M. B., et al. (2013). Stable isotope probing in the metagenomics era: A bridge towards improved bioremediation. Biotechnol. Adv. 31 154–165. 10.1016/j.biotechadv.2012.09.003 PubMed DOI PMC
Uhlík O., Wald J., Strejček M., Musilová L., Rídl J., Hroudová M., et al. (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE 7:e40653 10.1371/journal.pone.0040653 PubMed DOI PMC
Vézina J., Barriault D., Sylvestre M. (2008). Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit. J. Mol. Microbiol. Biotechnol. 15 139–151. 10.1159/000121326 PubMed DOI
Wang Q., Quensen J. F., Fish J. A., Kwon Lee T., Sun Y., Tiedje J. M., et al. (2013). Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4:e592-13. 10.1128/mBio.00592-13 PubMed DOI PMC
Weisman D., Yasuda M., Bowen J. L. (2013). FunFrame: functional gene ecological analysis pipeline. Bioinformatics 29 1212–1214. 10.1093/bioinformatics/btt123 PubMed DOI
Zhang S. W., Zhang Y. L., Pan Q., Cheng Y. M., Chou K. C. (2008). Estimating residue evolutionary conservation by introducing von Neumann entropy and a novel gap-treating approach. Amino Acids 35 495–501. 10.1007/s00726-007-0586-0 PubMed DOI PMC
Zhang Y., Sun Y. N. (2011). HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors. BMC Bioinformatics 12:10 10.1186/1471-2105-12-98 PubMed DOI PMC