Life on magnets: stem cell networking on micro-magnet arrays
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23936425
PubMed Central
PMC3731273
DOI
10.1371/journal.pone.0070416
PII: PONE-D-13-17176
Knihovny.cz E-zdroje
- MeSH
- buněčná adheze MeSH
- časové faktory MeSH
- čipová analýza tkání metody MeSH
- krysa rodu Rattus MeSH
- kultivační média chemie MeSH
- magnetické pole MeSH
- magnety * MeSH
- mezenchymální kmenové buňky cytologie MeSH
- nanočástice MeSH
- pohyb buněk MeSH
- potkani Wistar MeSH
- viabilita buněk MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferric oxide MeSH Prohlížeč
- kultivační média MeSH
- železité sloučeniny MeSH
Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.
Zobrazit více v PubMed
Oliveira FTP, Diedrichsen J, Verstynen T, Duque J, Ivry RB (2010) Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proceedings of the National Academy of Sciences 107: 17751–17756. PubMed PMC
Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28: 585–596. PubMed PMC
Mahmud G, Campbell CP, Bishop KJM, Komarova YA, Chaga O, et al. (2009) Directing cell motions on micropatterned ratchets. Nature Phys 5: 606–612.
Voldman J (2009) Cell migration: Going my way? Nature Physics 5: 536–537.
Baush AR, Kroy K (2006) A bottom-up approach to cell mechanics. Nature Physics 2: 231–238.
Zborowski M, Chalmers JJ (2011) Rare Cell Separation and Analysis by Magnetic Sorting. Analytical Chemistry 83: 8050–8056. PubMed PMC
Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5: 602–606. PubMed
Miyakoshi J (2005) Effects of static magnetic fields at the cellular level. Progress in Biophysics and Molecular Biology 87: 213–223. PubMed
Osman O, Zanini LF, Frénéa-Robin M, Dumas-Bouchiat F, Dempsey N, et al. (2012) Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomedical Microdevices 14: 947–954. PubMed
Zablotskii V, Lunov O, Dejneka A, Jastrabík L, Polyakova T, et al. (2011) Nanomechanics of Magnetically Driven Cellular Endocytosis. Appl Phys Lett 99: 183701–1-3.
Kustov M, Laczkowski P, Hykel D, Hasselbach K, Dumas-Bouchiat F, et al. (2010) Magnetic characterization of micropatterned Nd-Fe-B hard magnetic films using scanning Hall probe microscopy. J Appl Phys 108: 063914–1-7.
Dumas-Bouchiat F, Zanini LF, Kustov M, Dempsey NM, Grechishkin R, et al. (2010) Thermomagnetically patterned micromagnets. Appl Phys Lett 96: 102511–1-3.
Kauffmann P, Ith A, O'Brien D, Gaude V, Boué F, et al. (2011) Diamagnetically trapped arrays of living cells above micromagnets. Lab Chip 11: 3153–3161. PubMed
Zablotskii V, Pastor JM, Larumbe S, Perez-Landazabal JI, Recarte V, et al. (2010) High-Field Gradient Permanent Micromagnets for Targeted Drug Delivery with Magnetic Nanoparticles. AIP Conf Proc 1311: 152–157.
Zanini LF, Osman O, Frenea-Robin M, Haddour N, Dempsey NM, et al. (2012) Micro-magnet structures for magnetic positioning and alignment. J Appl Phys 111: 07B312–1-3.
Dempsey NM, Walther A, May F, Givord D, Khlopkov K, et al. (2007) Appl Phys Lett. 90: 092509–1-3.
Juneja JS, Wang PI, Karabacak T, Lu TM (2006) Dielectric barriers, pore sealing, and metallization. Thin Solid Films 504 (1–2): 239–242.
Kubinova S, Horak D, Sykova E (2009) Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 30: 4601–4609. PubMed
Kubinová S, Horák D, Kozubenko N, Vanecek V, Proks V, et al. (2010) The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials 31: 5966–5975. PubMed
Polte TR, Shen M, Karavitis J, Montoya M, Pendse J, et al. (2007) Nanostructured magnetizable materials that switch cells between life and death. Biomaterials 28: 2783–2790. PubMed
Kulangara K, Yang Y, Yang J, Leong KW (2012) Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials 33: 4998–4503. PubMed PMC
Kumar G, Tison CT, Chatterjee K, Pine PS, McDaniel JH, et al. (2011) The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 32: 9188–9196. PubMed PMC
Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33: 5230–5246. PubMed PMC
Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, et al. (2011) The effects of combined micron−/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32: 3395–3403. PubMed PMC
Sapir Y, Cohen S, Friedman G, Polyak B (2012) The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 33: 4100–4109. PubMed PMC
Béduer A, Vieu C, Arnauduc F, Sol JC, Loubinoux I, et al. (2012) Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials 33: 504–514. PubMed
Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, et al. (2009) Physical forces during collective cell migration. Nature Physics 5: 426–430.
Rahimzadeh J, Meng F, Sachs F, Wang J, Verma D, et al. (2011) Real-time observation of flow-induced cytoskeletal stress in living cells. Am J Physiol Cell Physiol 301: C646–C652. PubMed PMC
Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, et al. (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285: C1082–C1090. PubMed
Lin LAG, Liu AQ, Yu YF, Zhang C, Lim CS, et al. (2008) Cell compressibility studies utilizing noncontact hydrostatic pressure measurements on single living cells in a microchamber. Appl Phys Lett 92: 233901–1-3.
Colbert MJ, Raegen AN, Dalnoki-Veress K (2009) Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique. Eur Phys J E Soft Matter 30: 117–121. PubMed
Gov N, Zilman AG, Safran S (2003) Cytoskeleton confinement and tension of red blood cell membranes. Phys Rev Lett 90: 228101–1-4. PubMed
Popescu G, Ikeda T, Goda K, Best-Popescu CA, Laposata M, et al. (2006) Optical measurement of cell membrane tension. Phys Rev Lett 97: 218101–1-4. PubMed
Weston MC, Gerner MD, Fritsch I (2010) Magnetic Fields for Fluid Motion. Anal Chem 82: 3411–3418. PubMed
Mutschke G, Tschulik K, Weier T, Uhlemann M, Bund A, et al. (2010) On the action of magnetic gradient forces in micro-structured copper deposition. Electrochimica Acta 55: 9060–9066.
Dunne P, Mazza L, Coey JMD (2011) Magnetic Structuring of Electrodeposits. Phys Rev Lett 107(2): 024501–1-4. PubMed
Holle AW, Engler AJ (2010) Cell rheology: Stressed-out stem cells. Nature Materials 9: 4–6. PubMed
Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury