• This record comes from PubMed

Spectroscopic Discrimination of Bee Pollen by Composition, Color, and Botanical Origin

. 2021 Jul 21 ; 10 (8) : . [epub] 20210721

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
21-SVV/2019 and 21-SVV/2020 Specific university research of UCT Prague and Ministry of Education, Youth and Sports of the Czech Republic

Bee pollen samples were discriminated using vibrational spectroscopic methods by connecting with botanical sources, composition, and color. SEM and light microscope images of bee pollen loads were obtained and used to assess the botanical origin. Fourier transform (FT) mid- and near-infrared (FT-MIR, FT-NIR), and FT-Raman spectra of bee pollen samples (a set of randomly chosen loads can be defined as an independent sample) were measured and processed by principal component analysis (PCA). The CIE L*a*b* color space parameters were calculated from the image analysis. FT-MIR, FT-NIR, and FT-Raman spectra showed marked sensitivity to bee pollen composition. In addition, FT-Raman spectra indicated plant pigments as chemical markers of botanical origin. Furthermore, the fractionation of bee pollen was also performed, and composition of the fractions was characterized as well. The combination of imaging, spectroscopic, and statistical methods is a potent tool for bee pollen discrimination and thus may evaluate the quality and composition of this bee-keeping product.

See more in PubMed

Komosinska-Vassev K., Olczyk P., Kafmierczak J., Mencner L., Olczyk K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. Based Complement. Altern. Med. 2015:1–6. doi: 10.1155/2015/297425. PubMed DOI PMC

Campos M.G.R., Frigerio C., Lopes J., Bogdanov S. What is the future of Bee-Pollen? J. ApiProduct ApiMedical Sci. 2010;2:131–144. doi: 10.3896/IBRA.4.02.4.01. DOI

Almeida-Muradian L.B., Pamplona L.C., Coimbra S., Barth O.M. Chemical composition and botanical evaluation of dried bee pollen pellets. J. Food Compos. Anal. 2005;18:105–111. doi: 10.1016/j.jfca.2003.10.008. DOI

Campos M.G.M., Bogdanov S., de Almeida-Muradian L.B., Szczesna T., Mancebo Y., Frigerio C., Ferreira F. Pollen composition and standardisation of analytical methods. J. Apic. Res. Bee World. 2008;47:154–161. doi: 10.1080/00218839.2008.11101443. DOI

Feás X., Vázquez-Tato M.P., Estevinho L., Seijas J.A., Iglesias A. Organic Bee Pollen: Botanical Origin, Nutritional Value, Bioactive Compounds, Antioxidant Activity and Microbiological Quality. Molecules. 2012;17:8359–8377. doi: 10.3390/molecules17078359. PubMed DOI PMC

Rioff K., Bogdanov S. Authenticity of honey and other bee products. Apiacta. 2004;38:317–327.

Bogdanov S., Gallman P. Authenticity of Honey and Other Bee Products State of the Art. Technical-Scientific Information. [(accessed on 20 July 2021)]; Available online: https://ira.agroscope.ch/en-US/publication/10291.

Synytsya A., Synytsya A., Bleha R., Gróf J., Nůžková J., Ostrvoský R., Čopíková J., Brindza J. New trends in classification and quality estimation of bee pollens. Potravinárstvo. 2010;4:236–245.

Synytsya A., Synytsya A., Bleha R., Brindza J., Ostrvoský R., Čopíková J., Nôžková J. Morphologic and spectroscopic analysis of sunflower (Helianthus annuus L.) bee pollen. Potravinárstvo. 2011;5:308–313.

Brindza J., Brovarskyi V. Pollen and Bee Pollen of Some Plant Specie. Korsunskiy vidavnichiy dim Vsesvit; Kyiv, Ukraine: 2013. p. 137.

Chica M. Authentication of Bee Pollen Grains in Bright-Field Microscopy by Combining One-Class Classification Techniques and Image Processing. Microsc. Res. Tech. 2012;75:1475–1485. doi: 10.1002/jemt.22091. PubMed DOI

González-Martín I., Hernández-Hierro J.M., Barros-Ferreiro N., Cordón Marcos C., García-Villanova R.J. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in bee pollen. Talanta. 2007;72:998–1003. doi: 10.1016/j.talanta.2006.12.039. PubMed DOI

Ivleva N.P., Niessner R., Panne U. Characterization and discrimination of pollen by Raman microscopy. Anal. Bioanal. Chem. 2005;381:261–267. doi: 10.1007/s00216-004-2942-1. PubMed DOI

Dell’Anna R., Lazzeri P., Frisanco M., Monti F., Malvezzi Campeggi F., Gottardini E., Bersani M. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal. Chem. 2009;394:1443–1452. doi: 10.1007/s00216-009-2794-9. PubMed DOI

Pappas C.S., Tarantilis P.A., Harizanis P.C., Polissiou M.G. New method for pollen identification by FT-IR spectroscopy. Appl. Spectrosc. 2003;57:23–27. doi: 10.1366/000370203321165160. PubMed DOI

Zimmermann B., Bağcıoğlu M., Tafinstseva V., Kohler A., Ohlson M., Fjellheim S. A high-throughput FTIR spectroscopy approach to assess adaptive variation in the chemical composition of pollen. Ecol. Evol. 2017;7:10839–10849. doi: 10.1002/ece3.3619. PubMed DOI PMC

Gottardini E., Rossi S., Cristofolini F., Benedetti L. Use of Fourier transform infrared (FT-IR) spectroscopy as a tool for pollen identification. Aerobiologia. 2007;23:211–219. doi: 10.1007/s10453-007-9065-z. DOI

Bleha R., Shevtsova T., Kruzik V., Brindza J., Sinica A. Morphology, physicochemical properties and antioxidant capacity of bee pollens. Czech J. Food Sci. 2019;37:1–8. doi: 10.17221/139/2018-CJFS. DOI

Bleha R., Shevtsova T.S., Kružík V., Škorpilová T., Saloň I., Erban V., Brindza J., Brovarskyi V., Sinica A. Bee breads from two regions of Eastern Ukraine: Composition, physical properties and biological activities. Czech J. Food Sci. 2019;37:9–20. doi: 10.17221/201/2018-CJFS. DOI

Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI

Guillén M.D., Cabo N. Infrared Spectroscopy in the Study of Edible Oils and Fats. J. Sci. Food Agric. 1997;75:1–11. doi: 10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R. DOI

Melhuish J.H., Willis R.B., Wright C.S. Separation and identification of phenolic acids and related compounds by gas chromatography and fourier transform infrared spectroscopy. J. Chem. Ecol. 1987;13:317–323. doi: 10.1007/BF01025891. PubMed DOI

Ibrahim M., Alaam M., El-Haes H., Jalbout A., de Leon A. Analysis of the structure and vibrational spectra of glucose and fructose. Eclect. Química. 2006;31:15–21. doi: 10.1590/S0100-46702006000300002. DOI

Workman J.J.J. Interpretive Spectroscopy for Near Infrared. Appl. Spectrosc. Rev. 1996;31:251–320. doi: 10.1080/05704929608000571. DOI

Schultz H., Baranska M., Baranski R. Potential of NIR-FT-Raman Spectroscopy in Natural Carotenoid Analysis. Biopolymers. 2005;77:212–221. doi: 10.1002/bip.20215. PubMed DOI

Soderholm S., Roos Y.H., Meinander N., Hotokka M. Raman Spectra of Fructose and Glucose in the Amorphous and Crystalline States. J. Raman Spectrosc. 1999;30:1009–1018. doi: 10.1002/(SICI)1097-4555(199911)30:11<1009::AID-JRS436>3.0.CO;2-#. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...