Soil microbial communities following 20 years of fertilization and crop rotation practices in the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-02836S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
35346385
PubMed Central
PMC8962459
DOI
10.1186/s40793-022-00406-4
PII: 10.1186/s40793-022-00406-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cambisol, Chernozem, Community structure, Luvisol, Manure, Microbial diversity, NPK fertilizers, Sewage sludge,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world. In these soils, potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), and spring barley (Hordeum vulgare L.) were rotated every three years. RESULTS: Soil chemistry, which was significantly associated with location, fertilization, crop rotation, and the interaction of fertilization and location, was the dominant driver of soil microbial communities, both prokaryotic and fungal. A direct effect of long-term crop rotation and fertilization on the structure of their communities was confirmed, although there was no evidence of their influence on microbial diversity. Fungal and bacterial communities responded differently to fertilization treatments; prokaryotic communities were only significantly different from the control soil (CF) in soils treated with MF and SF3x, while fungal communities differed across all treatments. Indicator genera were identified for different treatments. These taxa were either specific for their decomposition activities or fungal plant pathogens. Sequential rotation of the three crops restricted the growth of several of the indicator plant pathogens. CONCLUSIONS: Long-term fertilization and crop rotation significantly altered microbial community structure in the soil. While fertilization affected soil microorganisms mainly through changes in nutrient profile, crop rotations lead to the attraction and repulsion of specific plant pathogens. Such changes in soil microbial communities need to be considered when planning soil management.
Zobrazit více v PubMed
Reeves DW. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res. 1997;43:131–167. doi: 10.1016/S0167-1987(97)00038-X. DOI
Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive earth’s biogeochemical cycles. Science. 2008;320:1034–1039. doi: 10.1126/science.1153213. PubMed DOI
Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils. 2012;48:489–499. doi: 10.1007/s00374-012-0691-4. DOI
van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x. PubMed DOI
Hu J, Wei Z, Friman V-P, Gu S, Wang X, Eisenhauer N, Yang T, Ma J, Shen Q, Xu Y, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBio. 2016 doi: 10.1128/mBio.01790-16. PubMed DOI PMC
Cleveland CC, Liptzin D. C:N: P stoichiometry in soil: is there a “redfield ratio” for the microbial biomass? Biogeochemistry. 2007;85:235–252. doi: 10.1007/s10533-007-9132-0. DOI
Zhang Y, Shen H, He X, Thomas BW, Lupwayi NZ, Hao X, Thomas MC, Shi X. Fertilization shapes bacterial community structure by alteration of soil PH. Front Microbiol. 2017 doi: 10.3389/fmicb.2017.01325. PubMed DOI PMC
Dennis PG, Miller AJ, Hirsch PR. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? Root exudates and rhizosphere bacteria. FEMS Microbiol Ecol. 2010;72:313–327. doi: 10.1111/j.1574-6941.2010.00860.x. PubMed DOI
Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100:1738–1750. doi: 10.3732/ajb.1200572. PubMed DOI
Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD. Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol. 2004;70:1475–1482. doi: 10.1128/AEM.70.3.1475-1482.2004. PubMed DOI PMC
Hermida L, Agustian J. Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ Technol Innov. 2019;13:113–121. doi: 10.1016/j.eti.2018.11.005. DOI
Bünemann EK, Schwenke GD, Van Zwieten L. Impact of agricultural inputs on soil organisms—a review. Soil Res. 2006;44:379. doi: 10.1071/SR05125. DOI
Golabi MH, Denney MJ, Iyekar C. Value of composted organic wastes as an alternative to synthetic fertilizers for soil quality improvement and increased yield. Compost Sci Util. 2007;15:267–271. doi: 10.1080/1065657X.2007.10702343. DOI
Collivignarelli A, Frattarola CM, Padovani K. Torretta legislation for the reuse of biosolids on agricultural land in Europe: overview. Sustainability. 2019;11:6015. doi: 10.3390/su11216015. DOI
Eurostat (Overview, 2019) Sewage sludge production and disposal from urban wastewater. https://Ec.Europa.Eu/Eurostat/Web/Environment/Water.
Chew C, Yen N, Ho Y. Show transformation of biomass waste into sustainable organic fertilizers. Sustainability. 2019;11:2266. doi: 10.3390/su11082266. DOI
EUR-Lex Directive EU/2018/851 EUR-Lex Directive EU/2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. Off. J. Eur. Communities 2018, 150, 109–140
Blanchet G, Gavazov K, Bragazza L, Sinaj S. Responses of soil properties and crop yields to different inorganic and organic amendments in a swiss conventional farming system. Agr Ecosyst Environ. 2016;230:116–126. doi: 10.1016/j.agee.2016.05.032. DOI
Minakova EA, Shlichkov AP, Arinina AV. Approaches to management of anthropogenic eutrophication caused by loading from mineral fertilizers. IOP Conf. Ser. Earth Environ. Sci. 2019;272:032006. doi: 10.1088/1755-1315/272/3/032006. DOI
Zhang T, Chen HYH, Ruan H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 2018;12:1817–1825. doi: 10.1038/s41396-018-0096-y. PubMed DOI PMC
Nyamangara J. Plant and environment interactions. J Environ Qual. 2003;32:8. doi: 10.2134/jeq2003.5990. PubMed DOI
Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem. 2007;39:2971–2976. doi: 10.1016/j.soilbio.2007.05.031. DOI
Ge Y, Zhang J, Zhang L, Yang M, He J. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in Northern China. J Soils Sediments. 2008;8:43–50. doi: 10.1065/jss2008.01.270. DOI
Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol. 2016 doi: 10.3389/fmicb.2016.01446. PubMed DOI PMC
Lentendu G, Wubet T, Chatzinotas A, Wilhelm C, Buscot F, Schlegel M. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol Ecol. 2014;23:3341–3355. doi: 10.1111/mec.12819. PubMed DOI
Gomez E, Ferreras L, Toresani S. Soil bacterial functional diversity as influenced by organic amendment application. Biores Technol. 2006;97:1484–1489. doi: 10.1016/j.biortech.2005.06.021. PubMed DOI
Stiborova H, Wolfram J, Demnerova K, Macek T, Uhlik O. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion. Folia Microbiol. 2015;60:531–539. doi: 10.1007/s12223-015-0396-9. PubMed DOI
Berzsenyi Z, Győrffy B, Lap D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur J Agron. 2000;13:225–244. doi: 10.1016/S1161-0301(00)00076-9. DOI
Dixon GR, Tilston EL, editors. Soil microbiology and sustainable crop production. Dordrecht: Springer; 2010.
Larkin RP, Honeycutt CW. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology. 2006;96:68–79. doi: 10.1094/PHYTO-96-0068. PubMed DOI
Xuan DT, Guong VT, Rosling A, Alström S, Chai B, Högberg N. Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza sativa. Biol Fertil Soils. 2012;48:217–225. doi: 10.1007/s00374-011-0618-5. DOI
Soman C, Li D, Wander MM, Kent AD. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant Soil. 2017;413:145–159. doi: 10.1007/s11104-016-3083-y. DOI
McDaniel MD, Grandy AS, Tiemann LK, Weintraub MN. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol Biochem. 2014;78:243–254. doi: 10.1016/j.soilbio.2014.07.027. DOI
Tiemann LK, Grandy AS, Atkinson EE, Marin-Spiotta E, McDaniel MD. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett. 2015;18:761–771. doi: 10.1111/ele.12453. PubMed DOI
Venter ZS, Jacobs K, Hawkins H-J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia. 2016;59:215–223. doi: 10.1016/j.pedobi.2016.04.001. DOI
Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev. 2012;87:52–71. doi: 10.1111/j.1469-185X.2011.00184.x. PubMed DOI
Peralta AL, Sun Y, McDaniel MD, Lennon JT. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere. 2018;9:16. doi: 10.1002/ecs2.2235. DOI
Kracmarova M, Kratochvilova H, Uhlik O, Strejcek M, Szakova J, Cerny J, Tlustos P, Balik J, Demnerova K, Stiborova H. Response of soil microbes and soil enzymatic activity to 20 years of fertilization. Agronomy. 2020;10:1542. doi: 10.3390/agronomy10101542. DOI
Kracmarova M, Karpiskova J, Uhlik O, Strejcek M, Szakova J, Balik J, Demnerova K, Stiborova H. Microbial communities in soils and endosphere of Solanum tuberosum L. and their response to long-term fertilization. Microorganisms. 2020;8:1377. doi: 10.3390/microorganisms8091377. PubMed DOI PMC
Tóth, G.; Montanarella, L.; Stolbovoy, V.; Máté, F.; Bódis, K.; Jones, A.; Panagos, P.; Van Liedekerke, M.; European Commission; Joint Research Centre; et al. Soils of the European Union.; Publications Office: Luxembourg, 2008; ISBN 978-92-79-09530-6.
Status of the World’s Soil Resources: Main Report.; Food and Agriculture Organization of the United Nationsand Intergovernmental Technical Panel on Soils.; FAO and ITPS: Rome, Italy, 2015; ISBN 978-92-5-109004-6.
Rząsa S, Owczarzak W. Methods for the granulometric analysis of soil for science and practice. Pol J Soil Sci. 2013;46:50.
Stiborova H, Kolar M, Vrkoslavova J, Pulkrabova J, Hajslova J, Demnerova K, Uhlik O. Linking toxicity profiles to pollutants in sludge and sediments. J Hazard Mater. 2017;321:672–680. doi: 10.1016/j.jhazmat.2016.09.051. PubMed DOI
Zbíral J. Comparison of methods for soil PH determination. Rostl Výr. 2001;47:463–467.
Standard of Soil Quality – Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution; 1994.
Mehlich A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal. 1984;15:1409–1416. doi: 10.1080/00103628409367568. DOI
Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: selected plant secondary metabolites promote bacterial degradation of Cis-1,2-dichloroethylene (CDCE) Sci Rep. 2017 doi: 10.1038/s41598-017-07760-1. PubMed DOI PMC
Lopez-Echartea E, Strejcek M, Mateju V, Vosahlova S, Kyclt R, Demnerova K, Uhlik O. Bioremediation of chlorophenol-contaminated sawmill soil using pilot-scale bioreactors under consecutive anaerobic-aerobic conditions. Chemosphere. 2019;227:670–680. doi: 10.1016/j.chemosphere.2019.04.036. PubMed DOI
Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–7226. doi: 10.1128/AEM.02576-16. PubMed DOI PMC
Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T. Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE. 2012;7:e40653. doi: 10.1371/journal.pone.0040653. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
R Core Team. R: a language and environment for statistical computing in R foundation for statistical computing. Vienna, Austria, 2017.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal database project: data and tools for high throughput RRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC
Deshpande V, Wang Q, Greenfield P, Charleston M, Porras-Alfaro A, Kuske CR, Cole JR, Midgley DJ, Tran-Dinh N. Fungal identification using a Bayesian classifier and the warcup training set of internal transcribed spacer sequences. Mycologia. 2016;108:1–5. doi: 10.3852/14-293. PubMed DOI
Revelle, W.R. Psych: procedures for personality and psychological research. Software. Photographer 80; 2017.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. Vegan: community ecology package. R Package Version 2.5-6; 2019.
Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res. 2016;5:1492. doi: 10.12688/f1000research.8986.1. PubMed DOI PMC
Legendre P, Gallagher EDG. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129:271–280. doi: 10.1007/s004420100716. PubMed DOI
Cabin RT, Mitchell RT. To bonferroni or not to bonferroni: when and how are the questions. Bull Ecol Soc Am. 2000;81:246–248.
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI
Cáceres M, Jansen F. Package “indicspecies”: relationship between species and groups of sites (Version 1.7.6). 2016. https://cran.r-project.org/web/packages/indicspecies/indicspecies.pdf
Cáceres MD, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–1684. doi: 10.1111/j.1600-0706.2010.18334.x. DOI
Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–3574. doi: 10.1890/08-1823.1. PubMed DOI
Lladó S, López-Mondéjar R, Baldrian P. Drivers of microbial community structure in forest soils. Appl Microbiol Biotechnol. 2018;102:4331–4338. doi: 10.1007/s00253-018-8950-4. PubMed DOI
Xue P-P, Carrillo Y, Pino V, Minasny B, McBratney AB. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci Rep. 2018;8:11725. doi: 10.1038/s41598-018-30005-8. PubMed DOI PMC
Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA. Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem. 2008;40:803–813. doi: 10.1016/j.soilbio.2007.10.015. DOI
Waldrop MP, Holloway JM, Smith DB, Goldhaber MB, Drenovsky RE, Scow KM, Dick R, Howard D, Wylie B, Grace JB. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology. 2017;98:1957–1967. doi: 10.1002/ecy.1883. PubMed DOI
Xu Z, Zhang T, Wang S, Wang Z. Soil PH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast China: Jilin Province Case. Appl Soil Ecol. 2020;155:103629. doi: 10.1016/j.apsoil.2020.103629. DOI
Penn CJ, Camberato JJ. A critical review on soil chemical processes that control how soil PH affects phosphorus availability to plants. Agriculture. 2019;9:120. doi: 10.3390/agriculture9060120. DOI
Schloter M, Dilly O, Munch JC. Indicators for evaluating soil quality. Agric Ecosyst Environ. 2003;98:255–262. doi: 10.1016/S0167-8809(03)00085-9. DOI
Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015;9:1177–1194. doi: 10.1038/ismej.2014.210. PubMed DOI PMC
Luo G, Rensing C, Chen H, Liu M, Wang M, Guo S, Ling N, Shen Q. Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Funct Ecol. 2018;32:1103–1116. doi: 10.1111/1365-2435.13039. DOI
Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B, Shen Q, Zhang R. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE. 2014;9:e85301. doi: 10.1371/journal.pone.0085301. PubMed DOI PMC
Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–1017. doi: 10.1038/ismej.2011.159. PubMed DOI PMC
Riber L, Poulsen PHB, Al-Soud WA, Skov Hansen LB, Bergmark L, Brejnrod A, Norman A, Hansen LH, Magid J, Sørensen SJ. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. FEMS Microbiol Ecol. 2014;90:206–224. doi: 10.1111/1574-6941.12403. PubMed DOI
Hartmann M, Widmer F. Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol. 2006;72:7804–7812. doi: 10.1128/AEM.01464-06. PubMed DOI PMC
Marschner P. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem. 2003;35:453–461. doi: 10.1016/S0038-0717(02)00297-3. DOI
Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R. NPK macronutrients and MicroRNA homeostasis. Front Plant Sci. 2015 doi: 10.3389/fpls.2015.00451. PubMed DOI PMC
Baldwin A, Brown TA, Beckett BHT, Elliott GEP. The forms of combination of Cu and Zn in digested sewage sludge. Water Res. 1983;17:1935–1944. doi: 10.1016/0043-1354(83)90217-8. DOI
Saha S, Saha BN, Pati S, Pal B, Hazra GC. Agricultural use of sewage sludge in India: benefits and potential risk of heavy metals contamination and possible remediation options—a review. Int J Environ Technol Manag. 2017;20:183–199. doi: 10.1504/IJETM.2017.089645. DOI
Council Directive 86/278/EEC Council Directive 86/278/EEC on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture, OJ L 181, 4.7.1986, pp. 6–12.
Rengel Z. Heavy metals as essential nutrients. In: Prsad MNV, Hagemyer J, editors. Heavy metal stress in plants. Berlin: Springer; 1999. pp. 231–251.
Liu J, Liu M, Wu M, Jiang C, Chen X, Cai Z, Wang B, Zhang J, Zhang T, Li Z. Soil PH rather than nutrients drive changes in microbial community following long-term fertilization in acidic ultisols of Southern China. J Soils Sediments. 2018;18:1853–1864. doi: 10.1007/s11368-018-1934-2. DOI
Iakimenko O, Otabbong E, Sadovnikova L, Persson J, Nilsson I, Orlov D, Ammosova Y. Dynamic transformation of sewage sludge and farmyard manure components. 1. Content of humic substances and mineralisation of organic carbon and nitrogen in incubated soils. Agric Ecosyst Environ. 1996;58:121–126. doi: 10.1016/0167-8809(95)01006-84. DOI
Clarke RM, Cummins E. Evaluation of “classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Hum Ecol Risk Assess Int J. 2015;21:492–513. doi: 10.1080/10807039.2014.930295. DOI
Ventorino V, Pascale A, Adamo P, Rocco C, Fiorentino N, Mori M, Faraco V, Pepe O, Fagnano M. Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra Dei Fuochi. Sci Rep. 2018;8:14281. doi: 10.1038/s41598-018-32688-5. PubMed DOI PMC
Manyi-Loh C, Mamphweli S, Meyer E, Makaka G, Simon M, Okoh A. An overview of the control of bacterial pathogens in cattle manure. IJERPH. 2016;13:843. doi: 10.3390/ijerph13090843. PubMed DOI PMC
Knelman JE, Schmidt SK, Lynch RC, Darcy JL, Castle SC, Cleveland CC, Nemergut DR. Nutrient addition dramatically accelerates microbial community succession. PLoS ONE. 2014;9:e102609. doi: 10.1371/journal.pone.0102609. PubMed DOI PMC
Rousk J, Baath E. Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biol. 2007;5:2173–2177. doi: 10.1016/j.soilbio.2007.03.023. DOI
Sun S, Li S, Avera BN, Strahm BD, Badgley BD. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl Environ Microbiol. 2017;83:e00966-17. doi: 10.1128/AEM.00966-17. PubMed DOI PMC
Gao L, Wang R, Gao J, Li F, Huang G, Huo G, Liu Z, Tang W, Shen G. Analysis of the structure of bacterial and fungal communities in disease suppressive and disease conducive tobacco-planting soils in China. Soil Res. 2020;58:35. doi: 10.1071/SR19204. DOI
Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M. Soil Fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem. 2012;46:26–32. doi: 10.1016/j.soilbio.2011.11.010. DOI
Zhang J, Loh K-C, Lee J, Wang C-H, Dai Y, Wah Tong Y. Three-stage anaerobic co-digestion of food waste and horse manure. Sci Rep. 2017 doi: 10.1038/s41598-017-01408-w. PubMed DOI PMC
Toyota K, Kuninaga S. Comparison of soil microbial community between soils amended with or without farmyard manure. Appl Soil Ecol. 2006;33:39–48. doi: 10.1016/j.apsoil.2005.09.002. DOI
Holman DB, Hao X, Topp E, Yang HE, Alexander TW. Effect of co-composting cattle manure with construction and demolition waste on the archaeal, bacterial, and fungal microbiota, and on antimicrobial resistance determinants. PLoS ONE. 2016;11:e0157539. doi: 10.1371/journal.pone.0157539. PubMed DOI PMC
Selvam A, Xu D, Zhao Z, Wong JWC. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Biores Technol. 2012;126:383–390. doi: 10.1016/j.biortech.2012.03.045. PubMed DOI
McPhillips K, Waters DM, Parlet C, Walsh DJ, Arendt EK, Murray PG. Purification and characterisation of a β-1,4-xylanase from Remersonia thermophila CBS 540.69 and its application in bread making. Appl Biochem Biotechnol. 2014;172:1747–1762. doi: 10.1007/s12010-013-0640-1. PubMed DOI
Wang K, Yin X, Mao H, Chu C, Tian Y. Changes in structure and function of fungal community in cow manure composting. Biores Technol. 2018;255:123–130. doi: 10.1016/j.biortech.2018.01.064. PubMed DOI
Stiborova H, Vrkoslavova J, Lovecka P, Pulkrabova J, Hradkova P, Hajslova J, Demnerova K. Aerobic biodegradation of selected polybrominated diphenyl ethers (PBDEs) in wastewater sewage sludge. Chemosphere. 2015;118:315–321. doi: 10.1016/j.chemosphere.2014.09.048. PubMed DOI
Chen Q, An X, Li H, Su J, Ma Y, Zhu Y-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92–93:1–10. doi: 10.1016/j.envint.2016.03.026. PubMed DOI
Huang K, Tang J, Zhang X-X, Xu K, Ren H. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing. Int J Mol Sci. 2014;15:10083–10100. doi: 10.3390/ijms150610083. PubMed DOI PMC
Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011;45:1165–1176. doi: 10.1016/j.watres.2010.11.010. PubMed DOI
Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC. PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in UK. Sewage sludge: survey results and implications. Environ Sci Technol. 2003;37:462–467. doi: 10.1021/es020161y. PubMed DOI
Pérez S, Guillamón M, Barceló D. Quantitative analysis of polycyclic aromatic hydrocarbons in sewage sludge from wastewater treatment plants. J Chromatogr A. 2001;938:57–65. doi: 10.1016/S0021-9673(01)01338-3. PubMed DOI
Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD. Microbial indicators for soil quality. Biol Fertil Soils. 2018;54:1–10. doi: 10.1007/s00374-017-1248-3. DOI
Nalin R, Simonet P, Vogel TM, Normand P. Rhodanobacter lindaniclasticus Gen. Nov., Sp. Nov., a lindane-degrading bacterium. Int J Syst Bacteriol. 1999;49:19–23. doi: 10.1099/00207713-49-1-19. PubMed DOI
Uhlik O, Musilova L, Ridl J, Hroudova M, Vlcek C, Koubek J, Holeckova M, Mackova M, Macek T. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl Microbiol Biotechnol. 2013;97:9245–9256. doi: 10.1007/s00253-012-4627-6. PubMed DOI
Lafortune I, Juteau P, Déziel E, Lépine F, Beaudet R, Villemur R. bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol. 2009;57:455–468. doi: 10.1007/s00248-008-9417-4. PubMed DOI
Kim JM, Le NT, Chung BS, Park JH, Bae J-W, Madsen EL, Jeon CO. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-Xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-A59. Appl Environ Microbiol. 2008;74:7313–7320. doi: 10.1128/AEM.01695-08. PubMed DOI PMC
Cui Z, Lai Q, Dong C, Shao Z. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol. 2008;10:2138–2149. doi: 10.1111/j.1462-2920.2008.01637.x. PubMed DOI PMC
Gojgic-Cvijovic GD, Milic JS, Solevic TM, Beskoski VP, Ilic MV, Djokic LS, Narancic TM, Vrvic MM. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation. 2012;23:1–14. doi: 10.1007/s10532-011-9481-1. PubMed DOI
Klankeo P, Nopcharoenkul W, Pinyakong O. Two novel pyrene-degrading Diaphorobacter Sp. and Pseudoxanthomonas Sp. isolated from soil. J Biosci Bioeng. 2009;108:488–495. doi: 10.1016/j.jbiosc.2009.05.016. PubMed DOI
Zhang X, Qu Y, You S, Ma Q, Zhou H, Zhang L, Zhang L, Jing J, Liu L. Bioremediation of nitrogen-containing organic pollutants using phenol-stimulated activated sludge: performance and microbial community analysis: phenol-stimulated sludge for n-heterocyclic bioremediation. J Chem Technol Biotechnol. 2018;93:3199–3207. doi: 10.1002/jctb.5676. DOI
Vidal CM, Vitale AA, Viale AA. Degradation of naphthalene-2-sulfonate by strains of micromonospora. Rev Argent Microbiol. 1999;31(1):42–48. PubMed
Ciancio A, Pieterse CMJ, Mercado-Blanco J. Editorial: harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol. Front Microbiol. 2016 doi: 10.3389/fmicb.2016.01620. PubMed DOI PMC
Smith SR. Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Proc R Soc A. 2009;367:4005–4041. doi: 10.1098/rsta.2009.0154. PubMed DOI
Pulkrabová J, Černý J, Száková J, Švarcová A, Gramblička T, Hajšlová J, Balík J, Tlustoš P. Is the long-term application of sewage sludge turning soil into a sink for organic pollutants? Evidence from field studies in the Czech Republic. J Soils Sediments. 2019;19:2445–2458. doi: 10.1007/s11368-019-02265-y. DOI
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321:341–361. doi: 10.1007/s11104-008-9568-6. DOI
Ridl J, Kolar M, Strejcek M, Strnad H, Stursa P, Paces J, Macek T, Uhlik O. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil. Front Microbiol. 2016 doi: 10.3389/fmicb.2016.00995. PubMed DOI PMC
Papik J, Folkmanova M, Polivkova-Majorova M, Suman J, Uhlik O. The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv. 2020;44:107614. doi: 10.1016/j.biotechadv.2020.107614. PubMed DOI
Sommermann L, Geistlinger J, Wibberg D, Deubel A, Zwanzig J, Babin D, Schlüter A, Schellenberg I. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing. PLoS ONE. 2018;13:e0195345. doi: 10.1371/journal.pone.0195345. PubMed DOI PMC
McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS. The discovery of the virulence gene ToxA in the wheat and barley pathogen bipolaris sorokiniana. Mol Plant Pathol. 2018;19:432–439. doi: 10.1111/mpp.12535. PubMed DOI PMC
Gupta PK, Chand R, Vasistha NK, Pandey SP, Kumar U, Mishra VK, Joshi AK. Spot blotch disease of wheat: the current status of research on genetics and breeding. Plant Pathol. 2018;67:508–531. doi: 10.1111/ppa.12781. DOI
Zhu M, Riederer M, Hildebrandt U. Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis. Fungal Biol. 2017;121:716–728. doi: 10.1016/j.funbio.2017.05.003. PubMed DOI
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. The top 10 fungal pathogens in molecular plant pathology: top 10 fungal pathogens. Mol Plant Pathol. 2012;13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. PubMed DOI PMC
Fones HN, Eyles CJ, Kay W, Cowper J, Gurr SJ. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fungal Genet Biol. 2017;106:51–60. doi: 10.1016/j.fgb.2017.07.002. PubMed DOI PMC
Durán P, Jorquera M, Viscardi S, Carrion VJ, de la Mora ML, Pozo MJ. Screening and characterization of potentially suppressive soils against Gaeumannomyces graminis under extensive wheat cropping by Chilean indigenous communities. Front Microbiol. 2017 doi: 10.3389/fmicb.2017.01552. PubMed DOI PMC