The stimulating role of syringic acid, a plant secondary metabolite, in the microbial degradation of structurally-related herbicide, MCPA
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30993052
PubMed Central
PMC6462179
DOI
10.7717/peerj.6745
PII: 6745
Knihovny.cz E-zdroje
- Klíčová slova
- Biodegradation, MCPA, PSM, Phenoxy herbicide, Syringic acid, tfdA,
- Publikační typ
- časopisecké články MeSH
The ability of microorganisms to degrade xenobiotics can be exploited to develop cost-effective and eco-friendly bioremediation technologies. Microorganisms can degrade almost all organic pollutants, but this process might be very slow in some cases. A promising way to enhance removal of recalcitrant xenobiotics from the environment lies in the interactions between plant exudates such as plant secondary metabolites (PSMs) and microorganisms. Although there is a considerable body of evidence that PSMs can alter the microbial community composition and stimulate the microbial degradation of xenobiotics, their mechanisms of action remain poorly understood. With this in mind, our aim was to demonstrate that similarity between the chemical structures of PSMs and xenobiotics results in higher micropollutant degradation rates, and the occurrence of corresponding bacterial degradative genes. To verify this, the present study analyses the influence of syringic acid, a plant secondary metabolite, on the bacterial degradation of an herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA). In particular, the presence of appropriate MCPA degradative genes, MCPA removal efficiency and changes in samples phytotoxicity have been analyzed. Significant MCPA depletion was achieved in samples enriched with syringic acid. The results confirmed not only greater MCPA removal from the samples upon spiking with syringic acid, and thus decreased phytotoxicity, but also the presence of a greater number of genes responsible for MCPA biodegradation. 16S rRNA gene sequence analysis revealed ubiquitous enrichment of the β-proteobacteria Rhodoferax, Achromobacter, Burkholderia and Cupriavidus. The obtained results provide further confirmation that plant metabolites released into the rhizosphere can stimulate biodegradation of xenobiotics, including MCPA.
Zobrazit více v PubMed
Bælum J, Henriksen T, Hansen HCB, Jacobsen GS. Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Applied Environmental Microbiology. 2006;72:1476–1786. doi: 10.1128/AEM.72.2.1476-1486.2006. PubMed DOI PMC
Bælum J, Jacobsen CS, Holben WE. Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2, 4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders. Systematic and Applied Microbiology. 2010;33:67–70. doi: 10.1016/j.syapm.2010.01.001. PubMed DOI
Batogliu-Pazarbasi M, Milosevic N, Malaguerra F, Binning PJ, Albrechtsen HJ, Bjerg PL, Aamand J. Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes. Environmental Pollution. 2013;176:275–283. doi: 10.1016/j.envpol.2013.01.050. PubMed DOI
Cheemanapalli S, Mopuri R, Golla R, Anuradha CM, Chitta K. Syringic acid (SA)—a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomedicine and Pharmacotherapy. 2018;108:547–557. doi: 10.1016/j.biopha.2018.09.069. PubMed DOI
Ćwieląg-Piasecka I, Medyńska-Juraszek A, Jerzykiewicz M, Dębicka M, Bekier J, Jamroz E, Kawłko D. Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments. 2018;18(8):2692–2702. doi: 10.1007/s11368-018-1976-5. DOI
Del Pilar Castillo M, Andersson A, Ander P, Stenström J, Torstensson L. Establishment of the white rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation systems intended for degradation of pesticides. World Journal of Microbiology and Biotechnology. 2001;17:627–633. doi: 10.1023/A:1012420422111. DOI
Ehrig A, Müller RH, Babel W. Isolation of phenoxy herbicide-degrading Rhodoferax species from contaminated building material. Acta Biotechnologica. 1997;17:351–356. doi: 10.1002/abio.370170411. DOI
Ely CS, Smets BF. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: implications for rhizodegradation. International Journal of Phytoremediation. 2017;19(10):877–883. doi: 10.1080/15226514.2017.1303805. PubMed DOI
Eurostat . Agricultural production-crops-statistics explained. Eurostat; Luxemburg: 2016. DOI
Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: selected plant secondary metabolites promote bacterial degradation of cis-1, 2-dichloroethylene (cDCE) Scientific Reports. 2017;7:1–11. doi: 10.1038/s41598-017-07760-1. PubMed DOI PMC
Gaunt JK, Evans WC. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Preliminary evidence for the metabolic pathway. Biochemistry Journal. 1971;122:519–526. doi: 10.1042/bj1220519. PubMed DOI PMC
Gilbert ES, Crowley DE. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Applied Environmental Microbiology. 1997;63:1933–1938. PubMed PMC
Goulding KWT. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management. 2016;32:390–399. doi: 10.1111/sum.12270. PubMed DOI PMC
Grabińska-Sota E, Wiśniowska E, Kalka J. Toxicity of selected synthetic auxines—2, 4-D and MCPA derivatives to broad-leaved and cereal plants. Crop Protection. 2003;22:355–360. doi: 10.1016/S0261-2194(02)00178-3. DOI
Greenwood SJ, Rutter A, Zeeb BA. The absorption and translocation of polychlorinated biphenyl congeners by Cucurbita pepo ssp pepo. Environmental Science and Technology. 2011;45:6511–6516. doi: 10.1021/es200598u. PubMed DOI
Hu C, Zhang Y, Tang X, Luo W. PCB Biodegradation and bphA1 gene expression induced by salicylic acid and biphenyl with Pseudomonas fluorescence P2W and Ralstonia eutropha H850. Polish Journal of Environmental Studies. 2014;23:1591–1598.
Itoh K, Tashiro Y, Uobe K, Suyama K, Yamamoto H. Root nodule Bradyrhizobium spp. harbor acid-degrading proteins homologous with genes encoding 2, 4-dichlorophenoxyacetic acid-degrading proteins. Applied and Environmental Microbiology. 2004;70:2110–2118. PubMed PMC
Jha P, Panwar J, Jha PN. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. International Journal of Environmental Science and Technology. 2015;12:789–802. doi: 10.1007/s13762-014-0515-1. DOI
Kersten M, Tunega D, Georgieva I, Vlasova N, Branscheid R. Adsorption of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) by goethite. Environmental Science and Technology. 2014;48:11803–11810. doi: 10.1021/es502444c. PubMed DOI
Leigh MB, Fletcher JS, Fu X, Schmitz FJ. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environmental Science and Technology. 2002;36:1579–1583. doi: 10.1021/es015702i. PubMed DOI
López-Piñeiro A, Peña D, Albarrán A, Sánchez-Llerena J, Becerra D. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste. Journal Contaminant Hydrology. 2013;152:137–146. doi: 10.1016/j.jconhyd.2013.07.003. PubMed DOI
Master ER, Mohn WW. Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400. Applied and Environmental Microbiology. 2001;67:2669–2676. doi: 10.1128/AEM.67.6.2669-2676.2001. PubMed DOI PMC
Mcgowan C, Fulthorpe R, Wright A, Tiedje JM, Gowan CMC. Evidence for interspecies gene transfer in the evolution of evidence for interspecies gene transfer in the evolution of 2, 4-dichlorophenoxyacetic acid degraders. Applied and Environmental Microbiology. 1998;64:4089–4092. PubMed PMC
Mierzejewska E, Baran A, Urbaniak M. The influence of MCPA on soil phytotoxicity and the presence of genes involved in its biodegradation. Archives of Environmental Protection. 2018;44(4):58–64.
Müller RH, Jorks S, Kleinsteuber S, Babel W. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2, 4-D and MCPA. Microbiological Research. 1999;154:241–246. doi: 10.1016/S0944-5013(99)80021-4. PubMed DOI
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. International Journal of Molecular Sciences. 2016;17:1205. doi: 10.3390/ijms17081205. PubMed DOI PMC
Nicolaisen MH, Bælum J, Jacobsen CS, Sørensen J. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Environmental Microbiology. 2008;10:571–579. doi: 10.1111/j.1462-2920.2007.01476.x. PubMed DOI
Nielsen MS, Bælum J, Jensen MB, Jacobsen CS. Mineralization of the herbicide MCPA in urban soils is linked to presence and growth of class III tfdA genes. Soil Biology and Biochemistry. 2011;43:984–990. doi: 10.1016/j.soilbio.2011.01.014. DOI
Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF. Comparative analysis of methane-oxidizing archea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology. 2001;67(4):1922–1934. doi: 10.1128/AEM.67.4.1922-1934.2001. PubMed DOI PMC
Pereira T, Cerejeira MJ, Espírito-Santo J. Use of microbiotests to compare the toxicity of water samples fortified with active ingredients and formulated pesticides. Environmental Toxicology. 2000;15:401–405.
Persoone G, Marsalek B, Blinova I, Törökne A, Zarina D, Manusadzianas L, Nałęcz-Jaweckki G, Tofan L, Stepanova N, Tothova L, Kolar B. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology. 2003;18:395–402. doi: 10.1002/tox.10141. PubMed DOI
Phytotoxkit . Standard operational procedure. Micro-BioTest Inc.; Nazareth: 2004. Seed germination and early growth microbiotest with higher plants; p. 24.
Podolska G. The effectiveness and phytotoxicity of herbicide in buckwheat cv. Kora. Polish Journal of Agronomy. 2014;19:17–24.
Polit JT, Praczyk T, Pernak J, Sobiech Ł, Jakubiak E, Skrzypczak G. Inhibition of germination and early growth of rape seed (Brassica napus L.) by MCPA in anionic and ester form. Acta Physiologae Plantarum. 2014;36:699–711. doi: 10.1007/s11738-013-1448-x. DOI
Poll C, Pagel H, Devers-Lamrani M, Martin-Laurent F, Ingwersen J, Streck T, Kendeler E. Regulation of bacterial and fungal MCPA degradation at the soil–litter interface. Soil Biology and Biochemistry. 2010;42:1879–1887. doi: 10.1016/j.soilbio.2010.07.013. DOI
Siciliano SD, Germida JJ, Banks K, Greer CW. Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied and Environmental Microbiology. 2002;69:483–489. PubMed PMC
Singer AC, Gilbert ES, Luepromchai E, Crowley DE. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Applied Microbiology and Biotechnology. 2000;54:838–843. doi: 10.1007/s002530000472. PubMed DOI
Singer AC, Thompson IP, Bailey MJ. The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation. Current Opinion in Microbiology. 2004;7:239–244. doi: 10.1016/j.mib.2004.04.007. PubMed DOI
Smith AE, Mortensen K, Aubin AJ, Molloy MM. Degradation of MCPA, 2, 4-D, and other phenoxyalkanoic acid herbicides using an isolated soil bacterium. Journal of Agricultural and Food Chemistry. 1994;42:401–405. doi: 10.1021/jf00038a031. DOI
Streber WR, Timmis KN, Zenk MH. Analysis, cloning, and high-level expression of 2, 4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. Journal of Bacteriology. 1987;169:2950–2955. doi: 10.1128/jb.169.7.2950-2955.1987. PubMed DOI PMC
Strzelczyk A. Methods of soil fungi analysis. Soil Science Annual. 1968;19:56–73.
Tonso NL, Matheson VG, Holben WE. Polyphasic characterization of a suite of bacterial isolates capable of degrading 2, 4-D. Microbial Ecology. 1995;30:3–24. doi: 10.1007/BF00184510. PubMed DOI
Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnology Advances. 2013;31:154–165. doi: 10.1016/j.biotechadv.2012.09.003. PubMed DOI PMC
Urbaniak M, Wyrwicka A, Zieliński M, Mankiewicz-Boczek J. Potential for phytoremediation of PCDD/PCDF-contaminated sludge and sediments using Cucurbitaceae plants: a pilot study. Bulletin of Environmental Contamination and Toxicology. 2016;97:401–406. doi: 10.1007/s00128-016-1868-6. PubMed DOI PMC
Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod J-L. Fungal bioconversion of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2, 4-dichlorophenol (2, 4-DCP) Chemosphere. 2005;60:1471–1480. doi: 10.1016/j.chemosphere.2004.11.102. PubMed DOI
Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD. Biodegradation of the herbicide 2, 4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Current Microbiology. 2017;74:193–202. doi: 10.1007/s00284-016-1173-y. PubMed DOI
Yoon JY, Chung IM, Thiruvengadam M. Evaluation of phenolic compounds, antioxidant and antimicrobial activities from transgenic hairy root cultures of gherkin (Cucumis anguria L.) South African Journal of Botany. 2015;100:80–86. doi: 10.1016/j.sajb.2015.05.008. DOI
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Zhou XG, Wu FZ, Xiang WS. Syringic acid inhibited cucumber seedling growth and changed rhizosphere microbial communities. Plant Soil and Environment. 2014;60:158–164. doi: 10.17221/924/2013-PSE. DOI