endophytic communities
Dotaz
Zobrazit nápovědu
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
- MeSH
- Ascomycota * metabolismus MeSH
- biodiverzita MeSH
- ekosystém MeSH
- endofyty MeSH
- houby metabolismus MeSH
- mykobiom * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Endophytic bacteria often promote plant growth and protect their host plant against pathogens, herbivores, and abiotic stresses including drought, increased salinity or pollution. Current agricultural practices are being challenged in terms of climate change and the ever-increasing demand for food. Therefore, the rational exploitation of bacterial endophytes to increase the productivity and resistance of crops appears to be very promising. However, the efficient and larger-scale use of bacterial endophytes for more effective and sustainable agriculture is hindered by very little knowledge on molecular aspects of plant-endophyte interactions and mechanisms driving bacterial communities in planta. In addition, since most of the information on bacterial endophytes has been obtained through culture-dependent techniques, endophytic bacterial diversity and its full biotechnological potential still remain highly unexplored. In this study, we discuss the diversity and role of endophytic populations as well as complex interactions that the endophytes have with the plant and vice versa, including the interactions leading to plant colonization. A description of biotic and abiotic factors influencing endophytic bacterial communities is provided, along with a summary of different methodologies suitable for determining the diversity of bacterial endophytes, mechanisms governing the assembly and structure of bacterial communities in the endosphere, and potential biotechnological applications of endophytes in the future.
Nowadays, scientific research revolution is going on in many areas, and the human health is one of them. However, in the earlier studies, it was observed that most of the people health in the world affects by consumptions of contaminated food which is dangerous for human health and country economy. Recent studies showed that the fresh vegetables and fruits are the major habitat for endophytic bacterial communities. Salmonella and Escherichia coli both are the very common bacteria founds in fresh vegetables and fruits. Generally, many people eat vegetables and fruits without cooking (in the form of salad). The continued assumption of such food increases the health risk factor for foodborne diseases. So, from the last decades, many researchers working to understand about the relationship of endophytic microbes with plants either isolated bacteria are pathogenic or nonpathogenic. Moreover, most of the endophytes were identified by using 16S rRNA sequencing method. Hence, this review elaborates on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. Furthermore, it is emphasized on the environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathogenesis.
Fungal endophytes have been found to exist in many plant species and appear to be important to their plant hosts. However, the diversity and biological activities of these fungi remain largely unknown. Zanthoxylum simulans Hance, a popular natural spice and medicinal plant, commonly known as Szechuan pepper or Chinese-pepper, grows on Kinmen Island, Taiwan. In this study, leaf and stem samples of Z. simulans, collected in summer and winter, were screened for antimicrobial and anti-inflammatory metabolite-producing endophytic fungi. A total of 113 endophytic strains were isolated and cultured from Z. simulans, among which 23 were found to possess antimicrobial activity, belonging to six fungal genera: Penicillium (26.09%, 6), Colletotrichum (21.74%, 5), Diaporthe (21.74%, 5), Daldinia (17.39%, 4), Alternaria (8.70%, 2), and Didymella (4.34%, 1). We also found that the number of species with antimicrobial activity and their compositions differed between summer and winter. Our study demonstrated that Z. simulans might contain large and diverse communities of endophytic fungi, and its community composition varies seasonally. In addition, fungal endophytes produce antimicrobial agents, which may protect their hosts against pathogens and could be a potential source of natural antibiotics.
This study profiled the various endophytic fungi isolated from the orchid Cymbidium sp. and their L-asparaginase production and antioxidant potential. The L-asparaginase production was first screened through qualitative plate screening then quantified by the Nesslerization method. The antioxidant potential was quantified via the 2,2-diphenyl-1-picrylhydrazyl assay. A total of 30 endophytic fungi were isolated and all fungal isolates exhibited various degrees of radical scavenging activities (45.28% to 76.4%). Isolate Lasiodiplodia theobromae (C11) had the highest antioxidant capacity, represented by the lowest IC50 value (5.75 mg/mL) and highest ascorbic acid equivalent antioxidant capacity value (12.17 mg/g). Additionally, 16 isolates produced L-asparaginase (53.33%), which includes primarily species of Fusarium proliferatum, Fusarium fujikuroi, Fusarium incarnatum, and Fusarium oxysporum. A new isolate has also been discovered from Cymbidium orchid, Buergenerula spartinae (C28), which showed the highest L-asparaginase activity (1.736 unit/mL). These findings supported the postulation that medicinal species of Orchidaceae such as Cymbidium sp. harbor endophytes that are producers of L-asparaginase and antioxidants with various potential applications.
- MeSH
- antioxidancia * metabolismus MeSH
- asparaginasa * metabolismus MeSH
- endofyty * izolace a purifikace metabolismus enzymologie klasifikace MeSH
- Fusarium enzymologie metabolismus izolace a purifikace MeSH
- fylogeneze MeSH
- houby klasifikace izolace a purifikace enzymologie MeSH
- Orchidaceae * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
The endophytic actinobacteria associated with Artemisia herba-alba (synonym: Seriphidium herba-alba) are highly diverse. This study aimed to illustrate the extent of their differences from the free-living actinobacteria in the surrounding environment. A selection of eighteen actinobacteria inhabiting A. herba-alba were compared with twenty and ten actinobatceria isolates from the surrounding desert and groundwater, respectively, representing six genera. Antagonistic and enzymatic activities, plant growth-promoting traits, and the occurrence of biosynthetic genes were compared among the isolates. Data were analyzed statistically using principal component analysis (PCA) and were visualized using heat map. Endophytic strains showed higher antimicrobial activity and production of plant growth promoters compared to desert and groundwater strains. Polyketide synthase and non-ribosomal peptide synthetase gene clusters were detected at higher frequencies in the endophytic strains (8 and 11 strains, respectively) than the desert strains (1 and 2 strains, respectively). In contrast, both gene clusters were not detected in the groundwater strains. The PCA revealed unique metabolic characteristics of the endophytes. The heatmap clustered the endophytic strains apart from the free-living strains, indicating distinctive qualitative and quantitative bioactivities. Analysis of 16S rRNA genes confirmed the chemotaxonomic identity of all but two strains, with > 94.5% similarity. Six endophytes displayed < 99.5% similarity with their closest type strains, which might indicate species novelty. This study provides an evidence of functional differences and possible species novelty of the endophytic actinobacteria inhabiting A. herba-alba, compared with the free-living species.
- MeSH
- Actinobacteria * genetika MeSH
- endofyty genetika MeSH
- fylogeneze MeSH
- pelyněk * MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
During our investigation on the endophytic fungi of Azadirachta indica, the strain YM 311593 was obtained from the fruit of the plant. The culture extract of the strain showed antifungal activities against four phytopathogenic fungi. Based on the morphological features and phylogenetic definition, the strain YM 311593 was identified as Paraconiothyrium sp. Four xanthones and one anthraquinone were obtained from the extract of the fermentation broth of the strain. They were characterized to be globosuxanthone A (1), vertixanthone (2), hydroxyvertixanthone (3), 3,8-dihydroxy-1-methy1-9H- xanthen-9-one (4), and danthron (5), respectively, by spectroscopic elucidation. Furthermore, the absolute configuration of 1 was deduced by X-ray diffraction analysis. Besides, compound 4 was firstly found from natural sources. The antifungal activities of compounds 1-5 towards four phytopathogens were assayed using broth microdilution method. Among them, globosuxanthone A (1) showed obvious antifungal activity towards Fusarium graminearum, Fusarium solani, and Botrytis cinerea with MIC values of 4, 8, and 16 μg/mL, respectively.
- MeSH
- Ascomycota chemie izolace a purifikace MeSH
- Azadirachta mikrobiologie MeSH
- endofyty chemie izolace a purifikace MeSH
- fylogeneze MeSH
- houby účinky léků MeSH
- kultivační média chemie MeSH
- ovoce mikrobiologie MeSH
- průmyslové fungicidy izolace a purifikace farmakologie MeSH
- xantony izolace a purifikace farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Medicinal plants have been studied for potential endophytic interactions and numerous studies have provided evidence that seeds harbor diverse microbial communities, not only on their surfaces but also within the embryo. Adenosine deaminase (ADA) is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Therefore, in this study, 20 types of medicinal plant seeds were used to screen endophytic fungi with tissue homogenate and streak. In addition, 128 morphologically distinct endophyte strains were isolated and their ADA inhibitory activity determined by a spectrophotometric assay. The strain with the highest inhibitory activity was identified as Cochliobolus sp. Seven compounds were isolated from the strain using a chromatography method. Compound 3 showed the highest ADA inhibitory activity and was identified as 5-hydroxy-2-hydroxymethyl-4H-pyran-4-one, based on the results of 1H and 13C NMR spectroscopy. The results of molecular docking suggested that compound 3 binds to the active site and the nonspecific binding site of the ADA. Furthermore, we found that compound 3 is a mixed ADA inhibitor. These results indicate that endophytic strains are a promising source of ADA inhibitors and that compound 3 may be a superior source for use in the preparation of biologically active ADA inhibitor compounds used to treat cancer.
- MeSH
- adenosindeaminasa chemie metabolismus MeSH
- Ascomycota chemie klasifikace genetika izolace a purifikace MeSH
- endofyty chemie klasifikace genetika izolace a purifikace MeSH
- inhibitory adenosindeaminasy chemie farmakologie MeSH
- léčivé rostliny mikrobiologie MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- nádory farmakoterapie enzymologie MeSH
- semena rostlinná mikrobiologie MeSH
- simulace molekulového dockingu MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
During a study of endophytic and saprotrophic fungi in the sapwood and phloem of broadleaf trees (Salix alba, Quercus robur, Ulmus laevis, Alnus glutinosa, Betula pendula) fungi belonging to an anamorphic coelomycetous genus not attributable to a described taxon were detected and isolated in pure culture. The new genus, Liberomyces, with two species, L. saliciphilus and L. macrosporus, is described. Both species have subglobose conidiomata containing holoblastic sympodial conidiogenous cells. The conidiomata dehisce irregularly or by ostiole and secrete a slimy suspension of conidia. The conidia are hyaline, narrowly allantoid with a typically curved distal end. In L. macrosporus simultaneous production of synanamorph with thin filamentous conidia was observed occasionally. The genus has no known teleomorph. Related sequences in the public databases belong to endophytes of angiosperms. Phylogenetic analysis revealed a position close to the Xylariales (Sordariomycetes), but family and order affiliation remained unclear.
- MeSH
- Ascomycota klasifikace genetika ultrastruktura MeSH
- bříza mikrobiologie MeSH
- DNA fungální MeSH
- dub (rod) mikrobiologie MeSH
- endofyty klasifikace ultrastruktura MeSH
- fylogeneze MeSH
- Magnoliopsida mikrobiologie MeSH
- mezerníky ribozomální DNA MeSH
- olše mikrobiologie MeSH
- ribozomální DNA MeSH
- Salix mikrobiologie MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- spory hub ultrastruktura MeSH
- stromy mikrobiologie MeSH
- Ulmus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Československo MeSH
The present work is aimed to hypothesize that fungal endophytes associated with wheat (Triticum aestivum L.) plants can play a variety of roles in biotechnology including plant growth. Out of 67 fungal isolates, five maximum drought-tolerant isolates were used to check their various plant growth-promoting traits, antioxidants, and antifungal activities under secondary screening. Fungal isolate #8TAKS-3a exhibited the maximum drought tolerance capacity and potential to produce auxin, gibberellic acid, ACC deaminase, phosphate, zinc solubilization, ammonia, siderophore, and extracellular enzyme activities followed by #6TAKR-1a isolate. In terms of antioxidant activities, #8TAKS-3a culture also showed maximum DPPH scavenging, total antioxidant, and NO-scavenging activities. However, #6TAKR-1a exhibited maximum total flavonoid content, total phenolic content, and Fe-reducing power and also the highest growth inhibition of Aspergillus niger (ITCC 6152) and Colletotrichum sp. (ITCC 6152). Based on morphological characters and multi-locus phylogenetic analysis of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), β-tubulin (TUB 2), and RNA polymerase II second largest subunit (RPB2) genes, potent fungal isolate #8TAKS-3a was identified as Talaromyces purpureogenus. Under the in vitro conditions, T. purpureogenus (#8TAKS-3a) was used as a bioinoculant that displayed a significant increase in various physio-biochemical growth parameters under normal and stressed conditions (p < 0.05). Our results indicate that drought stress-tolerant T. purpureogenus can be further used for field testing as a growth promoter.
- MeSH
- antioxidancia MeSH
- endofyty MeSH
- fylogeneze MeSH
- období sucha MeSH
- pšenice MeSH
- semenáček * MeSH
- Talaromyces * genetika MeSH
- Publikační typ
- časopisecké články MeSH