Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P20 GM103395
NIGMS NIH HHS - United States
P20 RR016466
NCRR NIH HHS - United States
PubMed
27313574
PubMed Central
PMC4889597
DOI
10.3389/fmicb.2016.00837
Knihovny.cz E-zdroje
- Klíčová slova
- Salix alaxensis, bioremediation, diesel range organics, fertilizer, microbial community structure, naphthalene degradation, phytoremediation, stable isotope probing,
- Publikační typ
- časopisecké články MeSH
Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders.
Zobrazit více v PubMed
Abbasian F., Lockington R., Megharaj M., Naidu R. (2015). A review on the genetics of aliphatic and aromatic hydrocarbon degradation. Appl. Biochem. Biotechnol. 178 224–250. 10.1007/s12010-015-1881-y PubMed DOI
Agency for Toxic Substances and Disease Registry (1999). Total Petroleum Hydrocarbons (TPH). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. PubMed
Agrawal A. A., Fishbein M. (2006). Plant defense syndromes. Ecology 87 S132–S149. 10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2 PubMed DOI
Anderson M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26 32–46. 10.1111/j.1442-9993.2001.01070.pp.x DOI
Argus G. W. (1999). Classification of salix in the new world. Botanical Electronic News (BEN) 227. Available at: http://www.ou.edu/cas/botany-micro/ben/ben227.html
Badri D. V., Weir T. L., Van Der Lelie D., Vivanco J. M. (2009). Rhizosphere chemical dialogues: plant–microbe interactions. Curr. Opin. Biotechnol. 20 642–650. 10.1016/j.copbio.2009.09.014 PubMed DOI
Benizri E., Amiaud B. (2005). Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biol. Biochem. 37 2055–2064. 10.1016/j.soilbio.2005.03.008 DOI
Berry D., Ben Mahfoudh K., Wagner M., Loy A. (2011). Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77 7846–7849. 10.1128/AEM.05220-11 PubMed DOI PMC
Bossert I., Bartha R. (1984). “The fate of petroleum in soil ecosystems,” in Petroleum Microbiology, ed. Atlas R. (New York, NY: MacMillan Press; ), 435–473.
Bryant J. P., Reichardt P. B., Clausen T. P. (1992). Chemically mediated interactions between woody plants and browsing mammals. J. Range Manag. 45 18–24. 10.2307/4002520 DOI
Bushnell L. D., Haas H. F. (1941). The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41 653–673. PubMed PMC
Chen S.-H., Aitken M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol. 33 435–439. 10.1021/es9805730 DOI
Dakora F. D., Phillips D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245 35–47. 10.1023/A:1020809400075 DOI
de Man J. C. (1983). MPN tables, corrected. Euro. J. Appl. Microbiol. Biotechnol. 17 301–305. 10.1007/BF00508025 DOI
Dennis P. G., Miller A. J., Hirsch P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 72 313–327. 10.1111/j.1574-6941.2010.00860.x PubMed DOI
Dunn N. W., Gunsalus I. C. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114 974–979. PubMed PMC
Fields M. J., Orians C. M. (2006). Specificity of phenolic glycoside induction in willow seedlings (Salix sericea) in response to herbivory. J. Chem. Ecol. 32 2647–2656. 10.1007/s10886-006-9188-7 PubMed DOI
Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261 754–756. 10.1126/science.261.5122.754 PubMed DOI
Haines J. R., Wrenn B. A., Holder E. L., Strohmeier K. L., Herrington R. T., Venosa A. D. (1996). Measurement of hydrocarbon-degrading microbial populations by a 96-well plate most-probable-number procedure. J. Ind. Microbiol. 16 36–41. 10.1007/BF01569919 PubMed DOI
Harayama S., Timmis K. N. (1989). “Catabolism of aromatic hydrocarbons by Pseudomonas,” in Genetics of Bacterial Diversity, eds Hopwood D. A., Chater K. F. (New York, NY: Academic Press; ), 151–174.
Hartmann A., Schmid M., Van Tuinen D., Berg G. (2009). Plant-driven selection of microbes. Plant Soil 321 235–257. 10.1007/s11104-008-9814-y DOI
Johnson D., Kershaw L. J., Mackinnon A., Pojar J. (2009). Plants of the Western Forest Alaska to Minnesota. Edmonton, AB: Lone Pine.
Jones M. D., Crandell D. W., Singleton D. R., Aitken M. D. (2011). Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ. Microbiol. 13 2623–2632. 10.1111/j.1462-2920.2011.02501.x PubMed DOI PMC
Juhasz A. L., Naidu R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int. Biodeterior. Biodegr. 45 57–88. 10.1016/S0964-8305(00)00052-4 DOI
Julkunen-Tiitto R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J. Agric. Food Chem. 33 213–217. 10.1021/jf00062a013 DOI
Julkunentiitto R. (1989). Phenolic constituents of Salix - a chemotaxonomic survey of further finnish species. Phytochemistry 28 2115–2125. 10.1016/S0031-9422(00)97930-5 DOI
Khan S., Afzal M., Iqbal S., Khan Q. M. (2013). Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90 1317–1332. 10.1016/j.chemosphere.2012.09.045 PubMed DOI
Kuiper I., Lagendijk E. L., Bloemberg G. V., Lugtenberg B. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Mol. Plant Microbe Interact. 17 6–15. 10.1094/MPMI.2004.17.1.6 PubMed DOI
Kurzawová V., Štursa P., Uhlík O., Norková K., Strohalm M., Lipov J., et al. (2012). Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. New Biotechnol. 30 15–22. 10.1016/j.nbt.2012.06.004 PubMed DOI
Leewis M. C., Reynolds C. M., Leigh M. B. (2013). Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Regions Sci. Technol. 96 129–138. 10.1016/j.coldregions.2013.08.011 PubMed DOI PMC
Leff J. W., Jones S. E., Prober S. M., Barberán A., Borer E. T., Firn J. L., et al. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. U.S.A. 112 10967–10972. 10.1073/pnas.1508382112 PubMed DOI PMC
Leigh M. B., Fletcher J. S., Fu X., Schmitz F. J. (2002). Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36 1579–1583. 10.1021/es015702i PubMed DOI
Liliensiek A.-K., Thakuria D., Clipson N. (2012). Influences of plant species composition, fertilisation and lolium perenne ingression on soil microbial community structure in three irish grasslands. Microb. Ecol. 63 509–521. 10.1007/s00248-011-9985-6 PubMed DOI
Lu X.-Y., Zhang T., Fang H.-P. (2011). Bacteria-mediated PAH degradation in soil and sediment. Appl. Microbiol. Biotechnol. 89 1357–1371. 10.1007/s00253-010-3072-7 PubMed DOI
Macek T., Macková M., Káš J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18 23–34. 10.1016/S0734-9750(99)00034-8 PubMed DOI
Macková M., Dowling D., Macek T. (eds) (2006). Phytoremediation and Rhizoremediation. Theoretical Background. Dordrecht: Springer.
Neumann G., George T. S., Plassard C. (2009). Strategies and methods for studying the rhizosphere—the plant science toolbox. Plant Soil 321 431–456. 10.1007/s11104-009-9953-9 DOI
Nováková M., Šašek V., Dobrev P. I., Valentová O., Burketová L. (2014). Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum – reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiol. Biochem. 80 308–317. 10.1016/j.plaphy.2014.04.019 PubMed DOI
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’hara R. B., et al. (2013). Vegan: Community Ecology Package. Available at: http://CRAN.R-project.org/package=vegan
Pagé A. P., Yergeau É., Greer C. W. (2015). Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons. PLoS ONE 10:e0132062 10.1371/journal.pone.0132062 PubMed DOI PMC
Pulford I. D., Watson C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environ. Int. 29 529–540. 10.1016/S0160-4120(02)00152-6 PubMed DOI
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rock S. A., Sayre P. G. (1998). Phytoremediation of hazardous wastes: potential regulatory acceptability. Remediation J. 8 5–17. 10.1002/rem.3440080403 DOI
Rosselló-Mora R. A., Lalucat J., García-Valdés E. (1994). Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl. Environ. Microbiol. 60 966–972. PubMed PMC
Salt D. E., Smith R. D., Raskin I. (1998). Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 643–668. 10.1146/annurev.arplant.49.1.643 PubMed DOI
Schell M. A. (1985). Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Gene 36 301–309. 10.1016/0378-1119(85)90185-4 PubMed DOI
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC
Schnoor J. L., Licht L. A., Mccutcheon S. C., Wolfe N. L., Carreira L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29 A318–A323. 10.1021/es00007a747 PubMed DOI
Schwab A. P., Su J., Wetzel S., Pekarek S., Banks M. K. (1999). Extraction of petroleum hydrocarbons from soil by mechanical shaking. Environ. Sci. Technol. 33 1940–1945. 10.1021/es9809758 DOI
Siciliano S. D., Germida J. J. (1998). Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ. Rev. 6 65–79. 10.1139/a98-005 DOI
Siciliano S. D., Germida J. J., Banks K., Greer C. W. (2003). Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl. Environ. Microbiol. 69 483–489. 10.1128/aem.69.1.483-489.2003 PubMed DOI PMC
Singer A. C., Crowley D. E., Thompson I. P. (2003). Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 21 123–130. 10.1016/S0167-7799(02)00041-0 PubMed DOI
Singleton D. R., Guzmán Ramirez L., Aitken M. D. (2009). Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading acidovorax strain. Appl. Environ. Microbiol. 75 2613–2620. 10.1128/AEM.01955-08 PubMed DOI PMC
Slater H., Gouin T., Leigh M. B. (2011). Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84 199–206. 10.1016/j.chemosphere.2011.04.058 PubMed DOI PMC
Su J.-Q., Ding L.-J., Xue K., Yao H.-Y., Quensen J., Bai S.-J., et al. (2015). Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol. Ecol. 24 136–150. 10.1111/mec.13010 PubMed DOI
Tanaka M., Nakamura M. (2015). Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory. Sci. Nat. 102 1–9. 10.1007/s00114-015-1296-1 PubMed DOI
Toussaint J.-P., Pham T., Barriault D., Sylvestre M. (2012). Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl. Microbiol. Biotechnol. 95 1589–1603. 10.1007/s00253-011-3824-z PubMed DOI
Trapp S., Köhler A., Larsen L. C., Zambrano K. C., Karlson U. (2001). Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. J. Soils Sediments 1 71–76. 10.1007/BF02987712 DOI
Uhlík O., Ječná K., Macková M., Vlček C., Hroudová M., Demnerová K., et al. (2009). Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75 6471–6477. 10.1128/AEM.00466-09 PubMed DOI PMC
Uhlík O., Wald J., Strejček M., Musilová L., Rídl J., Hroudová M., et al. (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE 7:e40653 10.1371/journal.pone.0040653 PubMed DOI PMC
Wald J., Hroudová M., Jansa J., Vrchotová B., Macek T., Uhlík O. (2015). Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment. Front. Microbiol. 6:1268 10.3389/fmicb.2015.01268 PubMed DOI PMC
White J. R., Nagarajan N., Pop M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5:e1000352 10.1371/journal.pcbi.1000352 PubMed DOI PMC
Whiteley A. S., Wiles S., Lilley A. K., Philp J., Bailey M. J. (2001). Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. J. Microbiol. Methods 44 79–88. 10.1016/S0167-7012(00)00231-1 PubMed DOI
Yergeau E., Sanschagrin S., Maynard C., St-Arnaud M., Greer C. W. (2014). Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. 8 344–358. 10.1038/ismej.2013.163 PubMed DOI PMC
Yi H., Crowley D. E. (2007). Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ. Sci. Technol. 41 4382–4388. 10.1021/es062397y PubMed DOI