Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P20 GM103395
NIGMS NIH HHS - United States
P20 RR016466
NCRR NIH HHS - United States
PubMed
27313574
PubMed Central
PMC4889597
DOI
10.3389/fmicb.2016.00837
Knihovny.cz E-zdroje
- Klíčová slova
- Salix alaxensis, bioremediation, diesel range organics, fertilizer, microbial community structure, naphthalene degradation, phytoremediation, stable isotope probing,
- Publikační typ
- časopisecké články MeSH
Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders.
Zobrazit více v PubMed
Abbasian F., Lockington R., Megharaj M., Naidu R. (2015). A review on the genetics of aliphatic and aromatic hydrocarbon degradation. PubMed DOI
Agency for Toxic Substances and Disease Registry (1999). PubMed
Agrawal A. A., Fishbein M. (2006). Plant defense syndromes. PubMed DOI
Anderson M. J. (2001). A new method for non-parametric multivariate analysis of variance. DOI
Argus G. W. (1999). Classification of salix in the new world.
Badri D. V., Weir T. L., Van Der Lelie D., Vivanco J. M. (2009). Rhizosphere chemical dialogues: plant–microbe interactions. PubMed DOI
Benizri E., Amiaud B. (2005). Relationship between plants and soil microbial communities in fertilized grasslands. DOI
Berry D., Ben Mahfoudh K., Wagner M., Loy A. (2011). Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. PubMed DOI PMC
Bossert I., Bartha R. (1984). “The fate of petroleum in soil ecosystems,” in
Bryant J. P., Reichardt P. B., Clausen T. P. (1992). Chemically mediated interactions between woody plants and browsing mammals. DOI
Bushnell L. D., Haas H. F. (1941). The utilization of certain hydrocarbons by microorganisms. PubMed PMC
Chen S.-H., Aitken M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by DOI
Dakora F. D., Phillips D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. DOI
de Man J. C. (1983). MPN tables, corrected. DOI
Dennis P. G., Miller A. J., Hirsch P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? PubMed DOI
Dunn N. W., Gunsalus I. C. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in PubMed PMC
Fields M. J., Orians C. M. (2006). Specificity of phenolic glycoside induction in willow seedlings ( PubMed DOI
Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. PubMed DOI
Haines J. R., Wrenn B. A., Holder E. L., Strohmeier K. L., Herrington R. T., Venosa A. D. (1996). Measurement of hydrocarbon-degrading microbial populations by a 96-well plate most-probable-number procedure. PubMed DOI
Harayama S., Timmis K. N. (1989). “Catabolism of aromatic hydrocarbons by
Hartmann A., Schmid M., Van Tuinen D., Berg G. (2009). Plant-driven selection of microbes. DOI
Johnson D., Kershaw L. J., Mackinnon A., Pojar J. (2009).
Jones M. D., Crandell D. W., Singleton D. R., Aitken M. D. (2011). Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. PubMed DOI PMC
Juhasz A. L., Naidu R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. DOI
Julkunen-Tiitto R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. DOI
Julkunentiitto R. (1989). Phenolic constituents of DOI
Khan S., Afzal M., Iqbal S., Khan Q. M. (2013). Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. PubMed DOI
Kuiper I., Lagendijk E. L., Bloemberg G. V., Lugtenberg B. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. PubMed DOI
Kurzawová V., Štursa P., Uhlík O., Norková K., Strohalm M., Lipov J., et al. (2012). Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. PubMed DOI
Leewis M. C., Reynolds C. M., Leigh M. B. (2013). Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. PubMed DOI PMC
Leff J. W., Jones S. E., Prober S. M., Barberán A., Borer E. T., Firn J. L., et al. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. PubMed DOI PMC
Leigh M. B., Fletcher J. S., Fu X., Schmitz F. J. (2002). Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. PubMed DOI
Liliensiek A.-K., Thakuria D., Clipson N. (2012). Influences of plant species composition, fertilisation and lolium perenne ingression on soil microbial community structure in three irish grasslands. PubMed DOI
Lu X.-Y., Zhang T., Fang H.-P. (2011). Bacteria-mediated PAH degradation in soil and sediment. PubMed DOI
Macek T., Macková M., Káš J. (2000). Exploitation of plants for the removal of organics in environmental remediation. PubMed DOI
Macková M., Dowling D., Macek T. (eds) (2006).
Neumann G., George T. S., Plassard C. (2009). Strategies and methods for studying the rhizosphere—the plant science toolbox. DOI
Nováková M., Šašek V., Dobrev P. I., Valentová O., Burketová L. (2014). Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum – reassessing the role of salicylic acid in the interaction with a necrotroph. PubMed DOI
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’hara R. B., et al. (2013).
Pagé A. P., Yergeau É., Greer C. W. (2015). Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons. PubMed DOI PMC
Pulford I. D., Watson C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. PubMed DOI
R Development Core Team (2009).
Rock S. A., Sayre P. G. (1998). Phytoremediation of hazardous wastes: potential regulatory acceptability. DOI
Rosselló-Mora R. A., Lalucat J., García-Valdés E. (1994). Comparative biochemical and genetic analysis of naphthalene degradation among PubMed PMC
Salt D. E., Smith R. D., Raskin I. (1998). Phytoremediation. PubMed DOI
Schell M. A. (1985). Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. PubMed DOI
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. PubMed DOI PMC
Schnoor J. L., Licht L. A., Mccutcheon S. C., Wolfe N. L., Carreira L. H. (1995). Phytoremediation of organic and nutrient contaminants. PubMed DOI
Schwab A. P., Su J., Wetzel S., Pekarek S., Banks M. K. (1999). Extraction of petroleum hydrocarbons from soil by mechanical shaking. DOI
Siciliano S. D., Germida J. J. (1998). Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. DOI
Siciliano S. D., Germida J. J., Banks K., Greer C. W. (2003). Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. PubMed DOI PMC
Singer A. C., Crowley D. E., Thompson I. P. (2003). Secondary plant metabolites in phytoremediation and biotransformation. PubMed DOI
Singleton D. R., Guzmán Ramirez L., Aitken M. D. (2009). Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading acidovorax strain. PubMed DOI PMC
Slater H., Gouin T., Leigh M. B. (2011). Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. PubMed DOI PMC
Su J.-Q., Ding L.-J., Xue K., Yao H.-Y., Quensen J., Bai S.-J., et al. (2015). Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. PubMed DOI
Tanaka M., Nakamura M. (2015). Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory. PubMed DOI
Toussaint J.-P., Pham T., Barriault D., Sylvestre M. (2012). Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. PubMed DOI
Trapp S., Köhler A., Larsen L. C., Zambrano K. C., Karlson U. (2001). Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. DOI
Uhlík O., Ječná K., Macková M., Vlček C., Hroudová M., Demnerová K., et al. (2009). Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. PubMed DOI PMC
Uhlík O., Wald J., Strejček M., Musilová L., Rídl J., Hroudová M., et al. (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PubMed DOI PMC
Wald J., Hroudová M., Jansa J., Vrchotová B., Macek T., Uhlík O. (2015). Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment. PubMed DOI PMC
White J. R., Nagarajan N., Pop M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PubMed DOI PMC
Whiteley A. S., Wiles S., Lilley A. K., Philp J., Bailey M. J. (2001). Ecological and physiological analyses of PubMed DOI
Yergeau E., Sanschagrin S., Maynard C., St-Arnaud M., Greer C. W. (2014). Microbial expression profiles in the rhizosphere of willows depend on soil contamination. PubMed DOI PMC
Yi H., Crowley D. E. (2007). Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. PubMed DOI