Krankheitsmodifizierende Therapieansätze bei der Huntington-Krankheit : Blicke zurück und Blicke voraus
[Disease-modifying treatment approaches in Huntington disease : Past and future]

. 2022 Feb ; 93 (2) : 179-190. [epub] 20211111

Jazyk němčina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34762178
Odkazy

PubMed 34762178
PubMed Central PMC8825394
DOI 10.1007/s00115-021-01224-8
PII: 10.1007/s00115-021-01224-8
Knihovny.cz E-zdroje

Huntington disease (HD) is the most frequent monogenetic neurodegenerative disease and can be unequivocally diagnosed even in the preclinical stage, at least in all individuals in whom the CAG expansion mutation in the huntingtin gene (HTT) is in the range of full penetrance. Therefore, important preconditions for an intervention early in the disease process are met, rendering modification of the course of the disease in a clinically meaningful way possible. In this respect, HD can be viewed as a model disorder for exploring neuroprotective treatment approaches. In the past emphasis was placed on the compensation of a suspected neurotransmitter deficit (GABA) analogous to Parkinson's disease and on classical neuroprotective strategies to influence hypothetical common pathways in neurodegenerative diseases (e.g., excitotoxicity, mitochondrial dysfunction, oxidative stress). With the discovery of the causative HTT mutation in 1993, therapeutic research increasingly focused on intervening as proximally as possible in the chain of pathophysiological events. Currently, an important point of intervention is the HTT mRNA with the aim of reducing the continued production of mutant huntingtin gene products and thus relieving the body of their detrimental actions. To this end, various treatment modalities (single-stranded DNA and RNA, divalent RNA and zinc finger repressor complexes, orally available splice modulators) were developed and are currently in clinical trials (phases I-III) or in late stages of preclinical development. In addition, there is the notion that it may be possible to modify the length of the somatically unstable CAG mutation, i.e. its increase in the brain during the lifetime, thereby slowing the progression of HD.

Die Huntington-Krankheit (HK) ist die häufigste monogenetische neurodegenerative Erkrankung und kann bereits im präklinischen Stadium zweifelsfrei diagnostiziert werden, zumindest in allen Fällen, bei denen die CAG-Expansionsmutation im Huntingtin-Gen (HTT) im Bereich der vollen Penetranz liegt. Wichtige Voraussetzungen für eine früh im Krankheitsprozess einsetzende und deshalb den weiteren Verlauf der Krankheit in klinisch relevanter Weise modifizierende Therapie sind damit gegeben und machen die HK zu einer Modellerkrankung für neuroprotektive Behandlungsansätze. In der Vergangenheit lag der Schwerpunkt auf dem Ausgleich vermuteter Neurotransmitterdefizite (GABA) analog zur Parkinson-Erkrankung und auf klassischen neuroprotektiven Strategien zur Beeinflussung hypothetischer gemeinsamer Endstrecken neurodegenerativer Erkrankungen (z. B. Exzitotoxizität, mitochondriale Dysfunktion, oxidativer Stress etc.). Mit der Entdeckung der krankheitsverursachenden HTT-Mutation im Jahr 1993 fokussierte sich die Therapieforschung zunehmend darauf, soweit proximal wie möglich in die pathophysiologische Ereigniskette einzugreifen. Ein wichtiger Ansatzpunkt ist hier die HTT-mRNA mit dem Ziel, die Nachproduktion mutierter Huntingtin-Genprodukte zu senken und damit den Körper von deren schädigenden Auswirkungen zu entlasten; zu diesem Zweck sind verschiedene Behandlungsmodalitäten (einzelsträngige DNA und RNA, divalente RNA und Zinkfinger-Repressorkomplexe, oral verfügbare Spleißmodulatoren) entwickelt worden, die sich in der klinischen Prüfung (Phase I–III) oder in späten Stadien der präklinischen Entwicklung befinden. Zudem zeichnet sich ab, dass es möglich sein könnte, die Länge der somatisch instabilen, d. h. über die Lebenszeit v. a. im Hirngewebe zunehmende CAG-Mutation selbst zu beeinflussen und die Progression der HK hierdurch zu bremsen.

Zobrazit více v PubMed

Albin RL, Young AB, Penney JB. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 1995;18:63–64. PubMed

Alterman JF, Godinho B, Hassler MR, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol. 2019;37:884–894. PubMed PMC

Amaro IA, Henderson LA. An intrabody drug (rAAV6-INT41) reduces the binding of N-terminal Huntingtin fragment(s) to DNA to basal levels in PC12 cells and delays cognitive loss in the R6/2 animal model. J Neurodegener Dis. 2016;2016:7120753. PubMed PMC

Andrew SE, Goldberg YP, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 1993;4:398–403. PubMed

Bañez-Coronel M, Ayhan F, Tarabochia AD, et al. RAN translation in Huntington disease. Neuron. 2015;88:667–677. PubMed PMC

Beal MF. Neurochemistry and toxin models in Huntington’s disease. Curr Opin Neurol. 1994;7:542–547. PubMed

Beal MF, Brouillet E, Jenkins BG, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci. 1993;13:4181–4192. PubMed PMC

Beal MF, Kowall NW, Ellison DW, et al. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature. 1986;321:168–171. PubMed

Behrens PF, Franz P, Woodman B, et al. Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain. 2002;125:1908–1922. PubMed

Biogen (2018) Spinraza® (Nusinersen): Berichte über das Auftreten eines kommunizierenden Hydrozephalus, der nicht mit einer Meningitis oder Blutung in Verbindung steht. https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2018/rhb-spinraza.pdf;jsessionid=E2DE942095F1AEF35D7B5CD2D4601FA8.internet571?__blob=publicationFile. Zugegriffen: 5. Okt. 2021

Cambon K, Zimmer V, Martineau S, et al. Preclinical evaluation of a lentiviral vector for Huntingtin silencing. Mol. Ther. Methods. Clin. Dev. 2017;5:259–276. PubMed PMC

Cankurtaran ES, Ozalp E, Soygur H, et al. Clinical experience with risperidone and memantine in the treatment of Huntington’s disease. J Natl Med Assoc. 2006;98:1353–1355. PubMed PMC

Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov. 2018;17:729–750. PubMed

Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. PubMed PMC

Coyle JT, Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature. 1976;263:244–246. PubMed

Dabrowska M, Juzwa W, Krzyzosiak WJ, et al. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases. Front Neurosci. 2018;12:75. PubMed PMC

Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90:537–548. PubMed

Difiglia M, Sapp E, Chase KO, et al. Aggregation of Huntingtin in neuronal Intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277:1990–1993. PubMed

Evers MM, Miniarikova J, Juhas S, et al. AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant Huntingtin lowering in a Huntington’s disease minipig model. Mol Ther. 2018;26:2163–2177. PubMed PMC

Ferreira JJ, Rosser A, Craufurd D, et al. Ethyl-eicosapentaenoic acid treatment in Huntington’s disease: a placebo-controlled clinical trial. Mov Disord. 2015;30:1426–1429. PubMed

Flower M, Lomeikaite V, Ciosi M, et al. MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1. Brain. 2019;142:1876–1886. PubMed PMC

Foroud T, Gray J, Ivashina J, et al. Differences in duration of Huntington’s disease based on age at onset. J Neurol Neurosurg Psychiatry. 1999;66:52–56. PubMed PMC

Geary RS, Norris D, Yu R, et al. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46–51. PubMed

Genetic Modifiers of Huntington’s Disease (Gem-Hd) Consortium CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell. 2019;178:887–900.e14. PubMed PMC

Genetic Modifiers of Huntington’s Disease (Gem-Hd) Consortium Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell. 2015;162:516–526. PubMed PMC

Goold R, Flower M, Moss DH, et al. FAN1 modifies Huntington’s disease progression by stabilizing the expanded HTT CAG repeat. Hum Mol Genet. 2019;28:650–661. PubMed PMC

Guo Q, Bin H, Cheng J, et al. The cryo-electron microscopy structure of huntingtin. Nature. 2018;555:117–120. PubMed PMC

Harding RJ, Tong YF. Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin. 2018;39:754–769. PubMed PMC

Hersch SM, Gevorkian S, Marder K, et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2′dG. Neurology. 2006;66:250–252. PubMed

Hersch SM, Schifitto G, Oakes D, et al. The CREST-E study of creatine for Huntington disease: a randomized controlled trial. Neurology. 2017;89:594–601. PubMed PMC

Huntington Study Group Dosage effects of riluzole in Huntington’s disease: a multicenter placebo-controlled study. Neurology. 2003;61:1551–1556. PubMed

Huntington Study Group Minocycline safety and tolerability in Huntington disease. Neurology. 2004;63:547–549. PubMed

Huntington Study Group A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology. 2001;57:397–404. PubMed

Huntington Study Group TREND-HD Investigators Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study. Arch Neurol. 2008;65:1582–1589. PubMed

Huntington’s Disease Collaborative Research Group A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–983. PubMed

Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. PubMed PMC

Jones L, Houlden H, Tabrizi SJ. DNA repair in the trinucleotide repeat disorders. Lancet Neurol. 2017;16:88–96. PubMed

Keskin S, Brouwers CC, Sogorb-Gonzalez M, et al. AAV5-miHTT lowers Huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes. Mol Ther Methods Clin Dev. 2019;15:275–284. PubMed PMC

Keum JW, Shin A, Gillis T, et al. The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. Am J Hum Genet. 2016;98:287–298. PubMed PMC

Khan E, Mishra SK, Mishra R, et al. Discovery of a potent small molecule inhibiting Huntington’s disease (HD) pathogenesis via targeting CAG repeats RNA and poly Q protein. Sci Rep. 2019;9:16872. PubMed PMC

Kingwell K. Double setback for ASO trials in Huntington disease. Nat Rev Drug Discov. 2021;20:412–413. PubMed

Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74:1031–1044. PubMed PMC

Kremer B, Clark CM, Almqvist EW, et al. Influence of lamotrigine on progression of early Huntington disease: a randomized clinical trial. Neurology. 1999;53:1000–1011. PubMed

Küppenbender KD, Standaert DG, Feuerstein TJ, et al. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J Comp Neurol. 2000;419:407–421. PubMed

Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol. 2019;20:406–420. PubMed PMC

Landwehrmeyer GB, Dubois B, de Yébenes JG, et al. Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol. 2007;62:262–272. PubMed

Landwehrmeyer GB, Standaert DG, Testa CM, et al. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J Neurosci. 1995;15:5297–5307. PubMed PMC

Leavitt BR, Tabrizi SJ. Antisense oligonucleotides for neurodegeneration. Science. 2020;367:1428–1429. PubMed

López Castel A, Cleary JD, Pearson CE. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol. 2010;11:165–170. PubMed

Lucetti C, Del Dotto P, Gambaccini G, et al. IV amantadine improves chorea in Huntington’s disease: an acute randomized, controlled study. Neurology. 2003;60:1995–1997. PubMed

Ludolph AC, He F, Spencer PS, et al. 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci. 1991;18:492–498. PubMed

Mcgarry A, Leinonen M, Kieburtz K, et al. Effects of pridopidine on functional capacity in early-stage participants from the PRIDE-HD study. J Huntingtons Dis. 2020;9:371–380. PubMed PMC

Mcgarry A, Mcdermott M, Kieburtz K, et al. A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology. 2017;88:152–159. PubMed PMC

Miniarikova J, Zanella I, Huseinovic A, et al. Design, characterization, and lead selection of therapeutic miRNas targeting Huntingtin for development of gene therapy for Huntington’s disease. Mol Ther Nucleic Acids. 2016;5:e297. PubMed PMC

Monteys AM, Ebanks SA, Keiser MS, et al. CRISPR/Cas9 editing of the mutant Huntingtin allele in vitro and in vivo. Mol Ther. 2017;25:12–23. PubMed PMC

Novartis (2020) Novartis receives US food and drug administration (FDA) orphan drug designation for branaplam (LMI070) in Huntington’s disease (HD). https://www.novartis.com/news/media-releases/novartis-receives-us-food-and-drug-administration-fda-orphan-drug-designation-branaplam-lmi070-huntington%27s-disease-hd. Zugegriffen: 31. Juli 2021

Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med. 2009;15:1407–1413. PubMed PMC

Pearce MMP, Spartz EJ, Hong W, et al. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the drosophila brain. Nat Commun. 2015;6:6768. PubMed PMC

Perry TL, Hansen S. What excitotoxin kills striatal neurons in Huntington’s disease? Clues from neurochemical studies. Neurology. 1990;40:20–24. PubMed

Perry TL, Hansen S, Kloster M. Huntington’s chorea. Deficiency of gamma-aminobutyric acid in brain. N Engl J Med. 1973;288:337–342. PubMed

Pfister EL, Kennington L, Straubhaar J, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol. 2009;19:774–778. PubMed PMC

Puri BK, Leavitt BR, Hayden MR, et al. Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology. 2005;65:286–292. PubMed

Rawlins MD, Wexler NS, Wexler AR, et al. The prevalence of Huntington’s disease. Neuroepidemiology. 2016;46:144–153. PubMed

Reilmann R, Gordon MF, Anderson KE, et al. The efficacy and safety results of laquinimod as a treatment for Huntington disease (LEGATO-HD) Neurology. 2019;92:S16.007.

Reilmann R, Mcgarry A, Grachev ID, et al. Safety and efficacy of pridopidine in patients with Huntington’s disease (PRIDE-HD): a phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurol. 2019;18:165–176. PubMed

Roche (2021) Roche provides update on tominersen programme in manifest Huntington’s disease. https://www.roche.com/dam/jcr:e077be26-41a0-4431-ae19-8f8dc846179a/en/22032021-mr-update-on-tominersen-programme-en.pdf. Zugegriffen: 31. Juli 2021

Sanberg PR, Coyle JT. Scientific approaches to Huntington’s disease. CRC Crit Rev Clin Neurobiol. 1984;1:1–44. PubMed

Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60:161–172. PubMed

Shelbourne PF, Keller-Mcgandy C, Bi WL, et al. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum Mol Genet. 2007;16:1133–1142. PubMed

Shenkman M, Geva M, Gershoni-Emek N, et al. Pridopidine reduces mutant huntingtin-induced endoplasmic reticulum stress by modulation of the sigma-1 receptor. J Neurochem. 2021;158:467–481. PubMed

Shoulson I, Odoroff C, Oakes D, et al. A controlled clinical trial of baclofen as protective therapy in early Huntington’s disease. Ann Neurol. 1989;25:252–259. PubMed

Silva AC, Lobo DD, Martins IM, et al. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain. 2019;143:407–429. PubMed

Spronck EA, Vallès A, Lampen MH, et al. Intrastriatal administration of AAV5-miHTT in non-human primates and rats is well tolerated and results in miHTT transgene expression in key areas of Huntington disease pathology. Brain Sci. 2021;11:129. PubMed PMC

Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant Huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25:461–474. PubMed PMC

Stoker TB, Andresen KER, Barker RA. Hydrocephalus complicating intrathecal antisense oligonucleotide therapy for Huntington’s disease. Mov Disord. 2021;36:263–264. PubMed PMC

Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101:801–819. PubMed

Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, et al. Targeting Huntingtin expression in patients with Huntington’s disease. N Engl J Med. 2019;380:2307–2316. PubMed

Taylor-Robinson SD, Weeks RA, Bryant DJ, et al. Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord. 1996;11:167–173. PubMed

Tomoshige S, Nomura S, Ohgane K, et al. Discovery of small molecules that induce the degradation of Huntingtin. Angew. Chem. Int. Ed. Engl. 2017;56:11530–11533. PubMed

Túnez I, Tasset I, Pérez-De La Cruz V, et al. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules. 2010;15:878–916. PubMed PMC

Vaccinex Inc. (2020) Top-line results of phase 2 SIGNAL study in Huntington’s disease support potential for cognitive benefit of pepinemab. https://ir.vaccinex.com/news-releases/news-release-details/top-line-results-phase-2-signal-study-huntingtons-disease/. Zugegriffen: 31. Juli 2021

Verny C, Bachoud-Lévi AC, Durr A, et al. A randomized, double-blind, placebo-controlled trial evaluating cysteamine in Huntington’s disease. Mov Disord. 2017;32:932–936. PubMed

Vonsattel JP, Keller C, Cortes Ramirez EP. Huntington’s disease—neuropathology. Handb Clin Neurol. 2011;100:83–100. PubMed

Wave Life Sciences Ltd. (2021) Wave life sciences provides update on phase 1b/2a PRECISION-HD trials. https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-provides-update-phase-1b2a-precision-hd. Zugegriffen: 31. Juli 2021

Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16:837–847. PubMed PMC

Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest. 2017;127:2719–2724. PubMed PMC

Zeitler B, Froelich S, Marlen K, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med. 2019;25:1131–1142. PubMed

Zhao T, Hong Y, Li XJ, et al. Subcellular clearance and accumulation of Huntington disease protein: a mini-review. Front Mol Neurosci. 2016;9:27. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...