Nanoscale Estimation of Coating Thickness on Substrates via Standardless BSE Detector Calibration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA17-15451S
Grantová Agentura České Republiky
FV30271
Ministerstvo Průmyslu a Obchodu
PubMed
32075242
PubMed Central
PMC7075161
DOI
10.3390/nano10020332
PII: nano10020332
Knihovny.cz E-zdroje
- Klíčová slova
- Monte Carlo simulation, SEM, back-scattered electrons, electron mirror, quantitative imaging, sample bias, standardless calibration, thin coating layers,
- Publikační typ
- časopisecké články MeSH
The thickness of electron transparent samples can be measured in an electron microscope using several imaging techniques like electron energy loss spectroscopy (EELS) or quantitative scanning transmission electron microscopy (STEM). We extrapolate this method for using a back-scattered electron (BSE) detector in the scanning electron microscope (SEM). This brings the opportunity to measure the thickness not just of the electron transparent samples on TEM mesh grids, but, in addition, also the thickness of thin films on substrates. Nevertheless, the geometry of the microscope and the BSE detector poses a problem with precise calibration of the detector. We present a simple method which can be used for such a type of detector calibration that allows absolute (standardless) measurement of thickness, together with a proof of the method on test samples.
Zobrazit více v PubMed
Echlin P. Handbook of Sample Preparation for Scanning Electron Microscopy and X-ray Microanalysis. Springer; Boston, MA, USA: 2009. p. 332. DOI
Schatten H., Walocha J., Litwin J., Miodoński A., Sepsenwol S., Naguro T., Nakane H., Inaga S., Walther P., Albrecht R., et al. Scanning Electron Microscopy for the Life Sciences. Cambridge University Press; Cambridge, UK: 2012. p. 261.
Fleck R.A., Humbel B.M. Biological Field Emission Scanning Electron Microscopy. 1st ed. Wiley; Hoboken, NJ, USA: 2018. p. 752.
Brodusch N., Demers H., Gauvin R. Field Emission Scanning Electron Microscopy. 1st ed. Springer; Singapore: 2018. p. 137. Springe Briefs in Applied Sciences and Technology. DOI
Goldstein J., Newbury D.E., Michael J.R., Ritchie N.W.M., Scott J.H.J. Scanning Electron Microscopy and X-ray Microanalysis. 4th ed. Springer; New York, NY, USA: 2018. p. 550.
Assa’d A.M.D., Gomati M.M.E. Backscattering Coefficients for Low Energy Electrons. Scan. Microsc. 1998;12:185–192.
Lin W.R., Chuang Y.J., Lee C.H., Tseng F.G., Chen F.R. Fabrication and characterization of a sensitivity multi-annular backscattered electron detector for desktop SEM. Sensors. 2018;18:3093. doi: 10.3390/s18093093. PubMed DOI PMC
Krzyzanek V., Sporenberg N., Keller U., Guddorf J., Reichelt R., Schönhoff M. Polyelectrolyte multilayer capsules: Nanostructure and visualisation of nanopores in the wall. Soft Matter. 2011;7:7034–7041. doi: 10.1039/c1sm05406f. DOI
Dapor M., Bazzanella N., Toniutti L., Miotello A., Gialanella S. Backscattered electrons from surface films deposited on bulk targets: A comparison between computational and experimental results. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2011;269:1672–1674. doi: 10.1016/j.nimb.2010.11.016. DOI
Dapor M., Bazzanella N., Toniutti L., Miotello A., Crivellari M., Gialanella S. Backscattered electrons from gold surface films deposited on silicon substrates: A joint experimental and computational investigation to add new potentiality to electron microscopy. Surf. Interface Anal. 2013;45:677–681. doi: 10.1002/sia.5144. DOI
Assa’d A.M.D. Monte Carlo calculation of the backscattering coefficient of thin films of low on high atomic number materials and the reverse as a function of the incident electron energy and film thickness. Appl. Phys. A. 2018;124:699. doi: 10.1007/s00339-018-2073-8. DOI
Müller E., Gerthsen D. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy. Ultramicroscopy. 2017;173:71–75. doi: 10.1016/j.ultramic.2016.12.003. PubMed DOI
Volkenandt T., Müller E., Hu D.Z., Schaadt D.M., Gerthsen D. Quantification of sample thickness and in-concentration of InGaAs quantum wells by transmission measurements in a scanning electron microscope. Microsc. Microanal. 2010;16:604–613. doi: 10.1017/S1431927610000292. PubMed DOI
Kim H., Negishi T., Kudo M., Takei H., Yasuda K. Quantitative backscattered electron imaging of field emission scanning electron microscopy for discrimination of nano-scale elements with nm-order spatial resolution. J. Electron. Microsc. 2010;59:379–385. doi: 10.1093/jmicro/dfq012. PubMed DOI
Garitagoitia Cid A., Rosenkranz R., Löffler M., Clausner A., Standke Y., Zschech E. Quantitative analysis of backscattered electron (BSE) contrast using low voltage scanning electron microscopy (LVSEM) and its application to AlGaN/GaN layers. Ultramicroscopy. 2018;195:47–52. doi: 10.1016/j.ultramic.2018.08.026. PubMed DOI
Sánchez E., Torres Deluigi M., Castellano G. Mean atomic number quantitative assessment in backscattered electron imaging. Microsc. Microanal. 2012;18:1355–1361. doi: 10.1017/S1431927612013566. PubMed DOI
Reimer L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. 2nd ed. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 1998. p. 538.
Volkenandt T., Müller E., Gerthsen D. Sample thickness determination by scanning transmission electron microscopy at low electron energies. Microsc. Microanal. 2014;20:111–123. doi: 10.1017/S1431927613013913. PubMed DOI
Skoupy R., Nebesarova J., Slouf M., Krzyzanek V. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy. 2019;202:44–50. doi: 10.1016/j.ultramic.2019.03.018. PubMed DOI
Pfaff M., Müller E., Klein M.F.G., Colsmann A., Lemmer U., Krzyzanek V., Reichelt R., Gerthsen D. Low-energy electron scattering in carbon-based materials analyzed by scanning transmission electron microscopy and its application to sample thickness determination. J. Microsc. 2011;243:31–39. doi: 10.1111/j.1365-2818.2010.03475.x. PubMed DOI
Seiter J., Müller E., Blank H., Gehrke H., Marko D., Gerthsen D. Backscattered electron SEM imaging of cells and determination of the information depth. J. Microsc. 2014;254:75–83. doi: 10.1111/jmi.12120. PubMed DOI
Demers H., Poirier-Demers N., Couture A.R., Joly D., Guilmain M., de Jonge N., Drouin D. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning. 2011;33:135–146. doi: 10.1002/sca.20262. PubMed DOI PMC
Salvat F., Jablonski A., Powell C.J. Elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 2005;165:157–190. doi: 10.1016/j.cpc.2004.09.006. DOI
Merli P., Morandi V., Corticelli F. Backscattered electron imaging and scanning transmission electron microscopy imaging of multi-layers. Ultramicroscopy. 2003;94:89–98. doi: 10.1016/S0304-3991(02)00217-6. PubMed DOI
Kowoll T., Müller E., Fritsch-Decker S., Hettler S., Störmer H., Weiss C., Gerthsen D. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure. Scanning. 2017;2017:1–12. doi: 10.1155/2017/4907457. PubMed DOI PMC
Leosson K., Ingason A.S., Agnarsson B., Kossoy A., Olafsson S., Gather M.C. Ultra-thin gold films on transparent polymers. Nanophotonics. 2013;2:3–11. doi: 10.1515/nanoph-2012-0030. DOI
Dapor M. Backscattering of low energy electrons from carbon films deposited on aluminum: A Monte Carlo simulation. J. Appl. Phys. 2004;95:718–721. doi: 10.1063/1.1633655. DOI
Assa’d A.M. Monte Carlo computation of the influence of carbon contamination layer on the energy distribution of backscattered electrons emerging from Al and Au. Jordan J. Phys. 2019;12:37–44.
Quantification of STEM Images in High Resolution SEM for Segmented and Pixelated Detectors