Quantification of STEM Images in High Resolution SEM for Segmented and Pixelated Detectors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000008
Technology Agency of the Czech Republic
PubMed
35010021
PubMed Central
PMC8746443
DOI
10.3390/nano12010071
PII: nano12010071
Knihovny.cz E-zdroje
- Klíčová slova
- Monte Carlo simulations, STEM segmented detector, pixelated detector, quantitative imaging, ray tracing, scanning electron microscopy,
- Publikační typ
- časopisecké články MeSH
The segmented semiconductor detectors for transmitted electrons in ultrahigh resolution scanning electron microscopes allow observing samples in various imaging modes. Typically, two standard modes of objective lens, with and without a magnetic field, differ by their resolution. If the beam deceleration mode is selected, then an electrostatic field around the sample is added. The trajectories of transmitted electrons are influenced by the fields below the sample. The goal of this paper is a quantification of measured images and theoretical study of the capability of the detector to collect signal electrons by its individual segments. Comparison of measured and ray-traced simulated data were difficult in the past. This motivated us to present a new method that enables better comparison of the two datasets at the cost of additional measurements, so-called calibration curves. Furthermore, we also analyze the measurements acquired using 2D pixel array detector (PAD) that provide a more detailed angular profile. We demonstrate that the radial profiles of STEM and/or 2D-PAD data are sensitive to material composition. Moreover, scattering processes are affected by thickness of the sample as well. Hence, comparing the two experimental and simulation data can help to estimate composition or the thickness of the sample.
Zobrazit více v PubMed
MacArtur K.E. The Use of Annular Dark-Field Scanning Transmission Electron Microscopy for Quantitative Characterisation. Johns. Matthey Technol. Rev. 2016;60:117–131. doi: 10.1595/205651316X691186. DOI
Young R.J., Buxbaum A., Peterson B., Schampers R. Application of In-situ Sample Preparation and Modeling of SEM-STEM Imaging; Proceedings of the 34th International Symposium for Testing and Failure Analysis; Portland, OR, USA. 2–6 November 2008; pp. 320–327. DOI
Crewe A.V., Wall J., Langmore J. Visibility of single atoms. Science. 1970;168:1338–1340. doi: 10.1126/science.168.3937.1338. PubMed DOI
Krivanek O., Chisholm M.F., Nicolosi V., Pennycook T.J., Corbin G.J., Dellby N., Murfitt M.F., Own C.S., Szilagyi Z.S., Oxley M.P., et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature. 2010;464:571–574. doi: 10.1038/nature08879. PubMed DOI
Yamashita S., Kikkawa J., Yanagisawa K., Nagai T., Ishizuka K., Kimoto K. Atomic number dependence of Z contrast in scanning transmission electron microscopy. Sci. Rep. 2018;8:12325. doi: 10.1038/s41598-018-30941-5. PubMed DOI PMC
Müllerová I., Frank L. Scanning low energy electron microscopy. In: Hawkes P.W., editor. Advances in Imaging and Electron Physics. Volume 128. Elsevier; San Diego, CA, USA: 2003. pp. 309–443.
Frank L., Hovorka M., Mikmeková Š., Mikmeková E., Mullerová I., Pokorná Z. Scanning Electron Microscopy with Samples in an Electric Field. Materials. 2012;5:2731–2756. doi: 10.3390/ma5122731. DOI
Frank L., Hovorka M., Konvalina I., Mikmeková Š., Müllerová I. Very low energy scanning electron microscopy. Nucl. Instrum. Methods Phys. Res. A. 2011;645:46–54. doi: 10.1016/j.nima.2010.12.214. DOI
Konvalina I., Müllerová I. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens. Nucl. Instrum. Methods Phys. Res. Sect. A. 2011;645:55–59. doi: 10.1016/j.nima.2010.12.232. DOI
Müllerová I., Konvalina I. Collection of secondary electrons in scanning electron microscopes. J. Microsc. 2009;236:203–210. doi: 10.1111/j.1365-2818.2009.03189.x. PubMed DOI
Müllerová I., Hovorka M., Konvalina I., Unconvsky M., Frank L. Scanning transmission low-energy electron microscopy. IBM J. Res. Dev. 2011;55:2:1–2:6. doi: 10.1147/JRD.2011.2156190. DOI
Fialová D., Skoupý R., Drozdová E., Paták A., Piňos J., Šín L., Beňuš R., Klíma B. The Application of Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDX) in Ancient Dental Calculus for the Reconstruction of Human Habits. Microsc. Microanal. 2017;23:1207–1213. doi: 10.1017/S1431927617012661. PubMed DOI
Materna Mikmeková E., Müllerová I., Frank L., Paták A., Polčák J., Sluyterman S., Lejeune M., Konvalina I. Low-energy electron microscopy of graphene outside UHV: Electron-induced removal of PMMA residues used for graphene transfer. J. Electron. Spectrosc. Relat. Phenom. 2020;241:146873. doi: 10.1016/j.elspec.2019.06.005. DOI
Müllerová I., Hovorka M., Frank L. A method of imaging ultrathin foils with very low energy electrons. Ultramicroscopy. 2012;119:78–81. doi: 10.1016/j.ultramic.2012.01.002. PubMed DOI
MacLaren I., Macgregor T., Allen C.S., Kirkland A.I. Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 2020;8:110901. doi: 10.1063/5.0026992. DOI
Ooe K., Seki T., Ikuhara Y., Shibata N. High contrast STEM imaging for light elements by an annular segmented detector. Ultramicroscopy. 2021;220:113133. doi: 10.1016/j.ultramic.2020.113133. PubMed DOI
Skoupý R., Fořt T., Krzyzanek V. Nanoscale Estimation of Coating Thickness on Substrates via Standardless BSE Detector Calibration. Nanomaterials. 2020;10:332. doi: 10.3390/nano10020332. PubMed DOI PMC
Sun C., Müller E., Meffert M., Gerthsen D. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope. Microsc. Microanal. 2018;24:1–8. doi: 10.1017/S1431927618000181. PubMed DOI
Kundrat V., Patak A., Pinkas J. Preparation of ultrafine fibrous uranium dioxide by electrospinning. J. Nucl. Mater. 2020;528:151877. doi: 10.1016/j.jnucmat.2019.151877. DOI
Frank L., Nebesářová J., Vancová M., Paták A., Müllerová I. Imaging of tissue sections with very slow electrons. Ultramicroscopy. 2015;148:146–150. doi: 10.1016/j.ultramic.2014.10.009. PubMed DOI
Merli P.G., Morandi V. Low-Energy STEM of Multilayers and Dopand Profiles. Microsc. Microanal. 2005;11:97–104. doi: 10.1017/S1431927605050063. PubMed DOI
Vystavěl T., Stejskal P., Unčovský M., Stephens C. Tilt-free EBSD. Microsc. Microanal. 2018;24:1126–1127. doi: 10.1017/S1431927618006116. DOI
Holzer J., Marshall A., Stejskal P., Stephens C., Vystavěl T. Large area EBSD mapping using a tilt-free configuration and direct electron detection sensor. Microsc. Microanal. 2021;27:1832–1835. doi: 10.1017/S143192762100670X. DOI
Caplins B.W., Holm J.D., Keller R.R. Transmission imaging with a programmable detector in a scanning electron microscope. Ultramicroscopy. 2019;196:40–48. doi: 10.1016/j.ultramic.2018.09.006. PubMed DOI
Krivanek O.L., Dellby N., Murffitt M.F. Aberration correction in electron microscopy. In: Orloff J., editor. Handbook of Charged Particle Optics. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008.
Humphry M.J., Kraus B., Hurst A.C., Maiden A.M., Rodenburg J.M. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 2012;3:730. doi: 10.1038/ncomms1733. PubMed DOI PMC
Hammersley J.M., Handscomb D.C. Monte Carlo methods. In: Bartlett M.S., editor. Methuen’s Monographs on Applied Probability and Statistics. Methuen & Co Ltd.; London, UK: 1975.
Bielajew A.F. Fundamentals of the Monte Carlo method for Neutral and Charged Particle Transport. The University of Michigan; Ann Arbor, MI, USA: 2001.
Ridky J. Can we observe the quark gluon plasma in cosmic ray showers. Astropart. Phys. 2004;17:355–365. doi: 10.1016/S0927-6505(01)00161-X. DOI
Kyrakou I., Incerti S., Francis Z. Technical Note: Improvements in geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Med. Phys. 2015;42:3870–3876. doi: 10.1118/1.4921613. PubMed DOI
Reimer L. In: Scanning Electron Microscopy. Physics of Image Formation and Microanalysis. Reimer L., editor. Springer; Berlin/Heidelberg, Germany: 1998. (Springer series in Optical Sciences). DOI
Stary V. Applications of Monte Carlo Method in Science and Engineering. InTech; Shanghai, China: 2011. Monte-Carlo Simulation in Electron Microscopy and Spectroscopy. DOI
Salvat F., Llovet X. Monte Carlo simulation and fundamental quantities. IOP Conf. Ser. Mater. Sci. Eng. 2018;304:012014. doi: 10.1088/1757-899X/304/1/012014. DOI
Skoupý R. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2020. Quantitative Imaging in Scanning Electron Microscope.100p
Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2003;506:250–303. doi: 10.1016/S0168-9002(03)01368-8. DOI
Kieft E., Bosch E. Refinement of Monte Carlo simulations of electron–specimen interaction in low-voltage SEM. J. Phys. D Appl. Phys. 2008;41:215310. doi: 10.1088/0022-3727/41/21/215310. DOI
Dwyer C. Quantitative annular dark-field imaging in the scanning transmission electron microscope—A review. J. Phys. Mater. 2021;4:042006. doi: 10.1088/2515-7639/ac1ab8. DOI
Walker C., Konvalina I., Mika F., Frank L., Müllerová I. Quantitative comparison of simulated and measured signals in the STEM mode of a SEM. Nucl. Instrum. Methods Phys. Res. B. 2018;415:17–24. doi: 10.1016/j.nimb.2017.10.034. DOI
MacArtur K.E., Jones L.B., Nellist P.D. How flat is your detector? Non-uniform annular detector sensitivity in STEM quantification. J. Phys. Conf. Ser. 2014;522:012018. doi: 10.1088/1742-6596/522/1/012018. DOI
He D.S., Li Z.Y. A practical approach to quantify the ADF detector in STEM. J. Phys. Conf. Ser. 2014;522:012017. doi: 10.1088/1742-6596/522/1/012017. DOI
Krause F.F., Schowalter M., Grieb T., Müller-Caspary K., Mehrtens T., Rosenauer A. Effects of instrument imperfections on quantitative scanning transmission electron microscopy. Ultramicroscopy. 2016;161:146–160. doi: 10.1016/j.ultramic.2015.10.026. PubMed DOI
Mika F., Walker C.G.H., Konvalina I., Müllerová I. Imaging with STEM Detector, Experiments vs. Simulation. Microsc. Microanal. 2015;21:66–71. doi: 10.1017/S143192761501315X. DOI
Thermo Fisher Scientific. [(accessed on 6 December 2021)]. Available online: https://corporate.thermofisher.com/us/en/index.html.
Konvalina I., Mika F., Krátký S., Materna Mikmeková E., Müllerová I. In-Lens Band-Pass Filter for Secondary Electrons in Ultrahigh Resolution SEM. Materials. 2019;12:2307. doi: 10.3390/ma12142307. PubMed DOI PMC
Salvat F., Fernández-Varea J.M., Sempau J. PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Nuclear Energy Agency, Organization for Economic Co-operation and Development; Barcelona, Spain: 2006.
Cullen D.E., Hubbell J.H., Kissel L. EPDL97: The Evaluated Photon Data Library, ′97 Version. Volume 6 University of California, Lawrence Livermore National Laboratory; Livermore, CA, USA: 1997. UCRL-50400.
Zlámal J., Lencová B. Development of the program EOD for design in electron and ion microscopy. Nucl. Instrum. Methods A. 2011;645:278–282. doi: 10.1016/j.nima.2010.12.198. DOI
Martinez G.T., Jones L., De Backer A., Béché A., Verbeeck J., Van Aert S., Nellist P.D. Quantitative STEM normalisation: The importance of the electron flux. Ultramicroscopy. 2015;159:46–58. doi: 10.1016/j.ultramic.2015.07.010. PubMed DOI
Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC
Harris C.R., Millman K.J., van der Walt S.J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N.J., et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC
Hunter J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
Lebow Company, Thin Films. [(accessed on 6 December 2021)]. Available online: https://lebowcompany.com/thin-films.
Fallon P.J., Veerasamy V.S., Davis C.A., Robertson J., Amaratunga G.A.J., Milne W.I., Koskinen J. Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys. Rev. B. 1994;49:2287. doi: 10.1103/PhysRevB.49.2287.2. PubMed DOI
Bhattarai B., Pandey A., Drabold D.A. Evolution of amorphous carbon across densities: An inferential study. Carbon. 2018;131:168–174. doi: 10.1016/j.carbon.2018.01.103. DOI
Beyer A., Straubinger R., Belz J., Volz K. Local sample thickness determination via scanning transmission electron microscopy defocus series. J. Microsc. 2016;262:171–177. doi: 10.1111/jmi.12284. PubMed DOI
Liu J., Lozano-Perez S., Wilkinson A.J., Grovenor C.R.M. On the depth resolution of transmission Kikuchi diffraction (TKD) analysis. Ultramicroscopy. 2019;205:5–12. doi: 10.1016/j.ultramic.2019.06.003. PubMed DOI
Konvalina I., Daniel B., Zouhar M., Paták A., Müllerová I., Frank L., Piňos J., Průcha L., Radlička T., Werner W.S.M., et al. Low-Energy Electron Inelastic Mean Free Path of Graphene Measured by a Time-of-Flight Spectrometer. Nanomaterials. 2021;11:2435. doi: 10.3390/nano11092435. PubMed DOI PMC
Vystavel T., Stejskal P., Uncovsky M. Measurement and Andpointing of Sample Thickness. US 10.978.272B2. U.S. Patent. 2021 April 13;
Zhang H., Egerton R.F., Malac M. Local Thickness Measurement in TEM. Microsc. Microanal. 2010;16:344–345. doi: 10.1017/S1431927610058630. DOI
Morandi V., Merli P.G. Contrast and resolution versus specimen thickness in low energy scanning transmission electron microscopy. J. Appl. Phys. 2007;101:114917. doi: 10.1063/1.2745333. DOI
Volkenandt T., Müller E., Gerthsen D. Sample Thickness Determination by Scanning Transmission Electron Microscopy at Low Electron Energies. Microsc. Microanal. 2014;20:142–143. doi: 10.1017/S1431927614002438. PubMed DOI