Low-Energy Electron Inelastic Mean Free Path of Graphene Measured by a Time-of-Flight Spectrometer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34578750
PubMed Central
PMC8471131
DOI
10.3390/nano11092435
PII: nano11092435
Knihovny.cz E-zdroje
- Klíčová slova
- band structure, density of states, density-functional theory, energy-loss spectrum, graphene, inelastic mean free path, many-body perturbation theory, time-of-flight spectrometer,
- Publikační typ
- časopisecké články MeSH
The detailed examination of electron scattering in solids is of crucial importance for the theory of solid-state physics, as well as for the development and diagnostics of novel materials, particularly those for micro- and nanoelectronics. Among others, an important parameter of electron scattering is the inelastic mean free path (IMFP) of electrons both in bulk materials and in thin films, including 2D crystals. The amount of IMFP data available is still not sufficient, especially for very slow electrons and for 2D crystals. This situation motivated the present study, which summarizes pilot experiments for graphene on a new device intended to acquire electron energy-loss spectra (EELS) for low landing energies. Thanks to its unique properties, such as electrical conductivity and transparency, graphene is an ideal candidate for study at very low energies in the transmission mode of an electron microscope. The EELS are acquired by means of the very low-energy electron microspectroscopy of 2D crystals, using a dedicated ultra-high vacuum scanning low-energy electron microscope equipped with a time-of-flight (ToF) velocity analyzer. In order to verify our pilot results, we also simulate the EELS by means of density functional theory (DFT) and the many-body perturbation theory. Additional DFT calculations, providing both the total density of states and the band structure, illustrate the graphene loss features. We utilize the experimental EELS data to derive IMFP values using the so-called log-ratio method.
Zobrazit více v PubMed
Standard E 673, Annual Book of the ASTM Standards, American Society for Testing and Materials. Vol. 3.06 ASTM; West Conshohocken, PA, USA: 1998.
Koralek J.D., Douglas J.F., Plumb N.C., Griffith J.D., Cundiff S.T., Kapteyn H.C., Murnane M.M., Dessau D.S. Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 2007;78:053905. doi: 10.1063/1.2722413. PubMed DOI
Seah M.P., Dench W.A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979;1:0142–2421. doi: 10.1002/sia.740010103. DOI
Zdyb R., Menteş T.O., Locatelli A., Niño M.A., Bauer E. Inelastic mean free path from reflectivity of slow electrons. Phys. Rev. B. 2013;87:075436. doi: 10.1103/PhysRevB.87.075436. DOI
Werner W.S.M. Questioning a Universal Law for Electron Attenuation. Physics. 2019;12:93. doi: 10.1103/Physics.12.93. DOI
Frank L., Mikmeková E., Müllerová I., Lejeune M. Counting graphene layers with very slow electrons. Appl. Phys. Lett. 2015;106:013117. doi: 10.1063/1.4905221. DOI
Vos M., Grande P.L. How the choice of model dielectric function affects the calculated observables. Nucl. Instrum. Meth. B. 2017;407:97–109. doi: 10.1016/j.nimb.2017.05.064. DOI
Emfietzoglou D., Kyriakou I., Garcia-Molina R., Abril I. Inelastic mean free path of low-energy electrons in condensed media: Beyond the standard models. Surf. Interface Anal. 2017;49:4–10. doi: 10.1002/sia.5878. DOI
Chanther C.T., Bourke J.D. Low-energy electron properties: Electron inelastic mean free path, energy loss function and the dielectric function. Recent measurements, applications, and the plasmon-coupling theory. Ultramicroscopy. 2019;201:38–48. doi: 10.1016/j.ultramic.2019.03.014. PubMed DOI
Bauer E. Surface microscopy with low energy electrons: LEEM. J. Electron. Spectrosc. Relat. Phenom. 2020;241:146806. doi: 10.1016/j.elspec.2018.11.005. DOI
Bauer E. Surface Microscopy with Low Energy Electrons. 1st ed. Springer; New York, NY, USA: 2014. Basic Interactions; pp. 21–88. DOI
Geelen D., Jobst J., Krasovskii E.E., van der Molen S.J., Tromp R.M. Nonuniversal Transverse Electron Mean Free Path through Few-layer Graphene. Phys. Rev. Lett. 2019;123:086802. doi: 10.1103/PhysRevLett.123.086802. PubMed DOI
Werner W.S.M., Smekal W., Tomastik C., Störi H. Surface excitation probability of medium energy electrons in metals and semiconductors. Surf. Sci. 2001;486:L461–L466. doi: 10.1016/S0039-6028(01)01091-3. DOI
Pauly N., Tougaard S. Surface and core hole effects in X-ray photoelectron spectroscopy. Surf. Sci. 2010;604:1193–1196. doi: 10.1016/j.susc.2010.04.001. DOI
Zemek J., Houdkova J., Jiricek P., Izak T., Kalbac M. Non-destructive depth profile reconstruction of single-layer graphene using angle-resolved X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2019;491:16–23. doi: 10.1016/j.apsusc.2019.06.083. DOI
Xu M., Fujita D., Chen H., Hanagata N. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation. Nonoscale. 2011;3:2854–2858. doi: 10.1039/c1nr10294j. PubMed DOI
Sugimoto T., Kimura K. Stability of Graphene Oxide Film to Electron Beam Irradiation and Possible Thickness Dependence of Electron Attenuation. Bull. Chem. Soc. Jpn. 2013;86:333–338. doi: 10.1246/bcsj.20120267. DOI
Graber T., Foster F., Schöll A., Reinert F. Experimental determination of the attenuation length of electrons in organic molecular solids: The example of PTCDA. Surf. Sci. 2011;605:878–882. doi: 10.1016/j.susc.2011.01.033. DOI
Locatelli A., Zamborlini G., Mentes T.O. Growth of single and multi-layer graphene on Ir(100) Carbon. 2014;74:237–248. doi: 10.1016/j.carbon.2014.03.028. DOI
Iacobucci S., Offi F., Torelli P., Petaccia L. Effective attenuation lengths of low energy electrons in MgO thin films. J. Electron. Spectrosc. Relat. Phenom. 2019;233:1–4. doi: 10.1016/j.elspec.2019.03.002. DOI
Werner W.S.M., Bellissimo A., Leber R., Ashraf A., Segui S. Reflection electron energy loss spectrum of single layer graphene measured on a graphite substrate. Surf. Sci. 2015;635:L1–L3. doi: 10.1016/j.susc.2014.12.016. DOI
Zdyb R., Bauer E. Spin-resolved inelastic mean free path of slow electrons in Fe. J. Phys. Condens. Matter. 2013;25:272201. doi: 10.1088/0953-8984/25/27/272201. PubMed DOI
Romanyuk O., Bartoš I. Electron attenuation anisotropy at crystal surfaces from LEED. Surf. Sci. 2009;603:2789–2792. doi: 10.1016/j.susc.2009.07.024. DOI
Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 1994;21:165–176. doi: 10.1002/sia.1997. DOI
Gries W.H. A Universal Predictive Equation for the Inelastic Mean Free Pathlengths of X-ray Photoelectrons and Auger Electrons. Surf. Interface Anal. 1996;24:38–50. doi: 10.1002/(SICI)1096-9918(199601)24:1<38::AID-SIA84>3.0.CO;2-H. DOI
Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 1930;397:325–400. doi: 10.1002/andp.19303970303. DOI
Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range. Surf. Interface Anal. 1991;17:911–926. doi: 10.1002/sia.740171304. DOI
Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. VIII. Data for 15 elemental solids over the 50–2000 eV range. Surf. Interface Anal. 2005;37:1–14. doi: 10.1002/sia.1997. DOI
Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range. Surf. Interface Anal. 1991;17:927–939. doi: 10.1002/sia.1997. PubMed DOI PMC
Reimer L. Electron Spectroscopic Imaging. In: Reimer L., editor. Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences. Volume 71. Springer; Berlin/Heidelberg, Germany: 1995. DOI
Hofmann S. Electron Energy Analyzer. In: Springer Series in Surface ScienceErtl G., Lüth H., Mills D.G., editors. Auger- and X-ray Photoelectron Spectroscopy in Materials Science. 49th ed. Volume 49. Springer; Berlin/Heidelberg, Germany: 2013. pp. 29–39.
Müllerová I., Frank L. Scanning low energy electron microscopy. In: Hawkes P.W., editor. Advances in Imaging and Electron Physics. Volume 128. Elsevier; San Diego, CA, USA: 2003. pp. 309–443.
Cai Y.H., Lai Y.H., Wang Y.S. Coupled Space- and Velocity-Focusing in Time-of-Flight Mass Spectrometry—A Comprehensive Theoretical Investigation. J. Am. Soc. Mass Spectrom. 2015;26:1722–1731. doi: 10.1007/s13361-015-1206-y. PubMed DOI
Amjadipour M., MacLeod J., Lipton-Duffin J., Tadich A., Boeckl J.J., Iacopi F., Motta N. Electron effective attenuation length in epitaxial graphene on SiC. Nanotechnology. 2019;30:025704. doi: 10.1088/1361-6528/aae7ec. PubMed DOI
Calliari L., Dapor M., Garberoglio G., Fanchenko S. Momentum transfer dependence of reflection electron energy loss spectra: Theory and experiment. Surf. Interface Anal. 2014;46:340–349. doi: 10.1002/sia.5495. DOI
Calliari L., Fanchenko S. The spatial extent of surface effects on electron inelastic scattering. Surf. Interface Anal. 2016;48:580–583. doi: 10.1002/sia.5884. DOI
Konvalina I., Daniel B., Zouhar M., Piňos J., Radlička T., Frank L., Müllerová I., Mikmeková E.M. Studying 2D Materials by Means of Microscopy and Spectroscopy with Low Energy Electrons. Microsc. Microanal. 2019;25:482–483. doi: 10.1017/S1431927619003143. DOI
DIGUN—Schottky Electron Gun DIGUN. [(accessed on 18 August 2021)]. Available online: https://www.delong.cz/products/electron-guns/
Konvalina I., Müllerová I. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens. Nucl. Instrum. Methods Phys. Res. Sect. A. 2011;645:55–59. doi: 10.1016/j.nima.2010.12.232. DOI
Cameron A.E., Eggers D.F. An Ion “Velocitron”. Rev. Sci. Instrum. 1948;19:605. doi: 10.1063/1.1741336. DOI
RoentDek Delayline Detectors. [(accessed on 18 August 2021)]. Available online: www.roentdek.com/detectors/
Verhoeven W., van Rens J.F., Van Ninhuijs M.A., Toonen W.F., Kieft E.R., Mutsaers P.H., Luiten O.J. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities. Struct. Dyn. 2016;3:054303. doi: 10.1063/1.4962698. PubMed DOI PMC
Richardson W.H. Bayesian-Based Iterative Method of Image Restoration. J. Opt. Soc. Am. 1972;62:55–59. doi: 10.1364/JOSA.62.000055. DOI
Lucy L.B. An iterative technique for the rectification of observed distributions. Astron. J. 1974;79:745. doi: 10.1086/111605. DOI
Eilers P.H.C. A Perfect Smoother. Anal. Chem. 2003;75:3631–3636. doi: 10.1021/ac034173t. PubMed DOI
Boelens H.F.M., Dijkstra R.J., Eilers P.H.C., Fitzpatrick F., Westerhuis J.A. New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. J. Chroma. A. 2004;1057:21–30. doi: 10.1016/j.chroma.2004.09.035. PubMed DOI
Egerton R.F. Electron. Energy-Loss Spectroscopy in the Electron. Microscope. 2nd ed. Springer Science & Business Media; New York, NY, USA: 1996.
Harris C.R., Millman K.J., van der Walt S.J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N.J., et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC
Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261. doi: 10.1038/s41592-020-0772-5. PubMed DOI PMC
Hunter J.D. Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
De La Peña F., Prestat E., Tonaas Fauske V., Burdet P., Furnival T., Jokubauskas P., Nord M., Ostasevicius T., MacArthur K.E., Johnstone D.N., et al. Hyperspy/hyperspy: Release v1.6.1. Zenodo. :2021. doi: 10.5281/ZENODO.4683076. DOI
Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI
Hamann D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B. 2013;88:085117. doi: 10.1103/PhysRevB.88.085117. DOI
N’Diaye A.T., Coraux J., Plasa T.N., Busse C., Michely T. Structure of epitaxial graphene on Ir(111) New J. Phys. 2008;10:043033. doi: 10.1088/1367-2630/10/4/043033. DOI
Baskin Y., Meyer L. Lattice Constants of Graphite at Low Temperatures. Phys. Rev. 1955;100:544. doi: 10.1103/PhysRev.100.544. DOI
Marini A., Hogan C., Grüning M., Varsano D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 2009;180:1392–1403. doi: 10.1016/j.cpc.2009.02.003. DOI
PELCO® Graphene & Graphene Oxide Films. [(accessed on 18 August 2021)]. Available online: https://www.tedpella.com/Support_Films_html/Graphene-TEM-Support-Film.htm.
Sunaoshi T., Kaji K., Orai Y., Schamp C.T., Voelkl E. STEM/SEM, Chemical Analysis, Atomic Resolution and Surface Imaging At ≤30 kV with No Aberration Correction for Nanomaterials on Graphene Support. Microsc. Microanal. 2016;22((Suppl. 3)):604–605. doi: 10.1017/S1431927616003871. DOI
Trickey S.B., Müller-Plathe F., Diercksen G.H.F., Boettger J.C. Interplanar binding and lattice relaxation in a graphite delayer. Phys. Rev. B. 1992;45:4460–4468. doi: 10.1103/PhysRevB.45.4460. PubMed DOI
Trevisanutto P.E., Giorgetti C., Reining L., Ladisa M., Olevano V. Ab Initio GW Many-Body Effects in Graphene. Phys. Rev. Lett. 2008;101:226405. doi: 10.1103/PhysRevLett.101.226405. PubMed DOI
Zhang Y., Tan Y.W., Stormer H.L., Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201. doi: 10.1038/nature04235. PubMed DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Waschmuth P., Hambach R., Kinyanjui M.K., Guzzo M., Benner G., Kaiser U. High-energy collective electronic excitations in free-standing single-layer graphene. Phys. Rev. B. 2013;88:075433. doi: 10.1103/PhysRevB.88.075433. DOI
Werner W.S., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. Secondary Electron Emission by Plasmon-Induced Symmetry Breaking in Highly Oriented Pyrolytic Graphite. Phys. Rev. Lett. 2020;125:196603. doi: 10.1103/PhysRevLett.125.196603. PubMed DOI
Lu J., Loh K.P., Huang H., Chen W., Wee A.T.S. Plasmon dispersion on epitaxial graphene studied using high-resolution electron energy-loss spectroscopy. Phys. Rev. B. 2009;80:113410. doi: 10.1103/PhysRevB.80.113410. DOI
Wachsmuth P., Hambach R., Benner G., Kaiser U. Plasmon bands in multilayer graphene. Phys. Rev. B. 2014;90:235434. doi: 10.1103/PhysRevB.90.235434. DOI
Liou S.C., Shie C.S., Chen C.H., Breitwieser R., Pai W.W., Guo G.Y., Chu M.W. π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy. Phys. Rev. B. 2015;91:045418. doi: 10.1103/PhysRevB.91.045418. DOI
Gao Y., Yuan Z. Anisotropic low-energy plasmon excitations in doped graphene: An ab initio study. Solid State Commun. 2011;151:1009–1013. doi: 10.1016/j.ssc.2011.05.001. DOI
Mowbray D.J. Theoretical electron energy loss spectroscopy of isolated graphene. Phys. Status Solidi B. 2014;251:2509–2514. doi: 10.1002/pssb.201451174. DOI
Warmbier R., Quandt A. Plasmonic and dielectric properties of ideal graphene. Comput. Mater. Sci. 2016;114:18–22. doi: 10.1016/j.commatsci.2015.12.012. DOI
Hambach R. Ph.D. Thesis. Ecole Polytechnique X, Ecole Polytechnique; Palaiseau, France: 2020. Theory and Ab-Initio Calculations of Collective Excitations in Nanostructures: Towards Spatially-Resolved EELS.
Nazarov V.U. Electronic excitations in quasi-2D crystals: What theoretical quantities are relevant to experiment? New. J. Phys. 2015;17:073018.
Despoja V., Novko D., Dekanić K., Šunjić M., Marušić L. Two-dimensional and π plasmon spectra in pristine and doped graphene. Phys. Rev. B. 2013;87:075447. doi: 10.1103/PhysRevB.87.075447. DOI
Da B., Sun Y., Hou Z., Liu J., Cuong N.T., Tsukagoshi K., Yoshikawa H., Tanuma S., Hu J., Gao Z., et al. Measurement of the Low-Energy Electron Inelastic Mean Free Path in Monolayer Graphene. Phys. Rev. Appl. 2020;13:044055. doi: 10.1103/PhysRevApplied.13.044055. DOI
Horing N.J.M., Iurov A., Gumbs G., Politano A., Chiarello G. Recent Progress on Nonlocal Graphene/Surface Plasmons. In: Ünlü H., Horing N.J.M., Dabowski J., editors. Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer; Cham, Switzerland: 2016. pp. 205–237. DOI
Werner W.S.M. Electron transport in solids for quantitative surface analysis. Surf. Interface Anal. 2001;31:141–176. doi: 10.1002/sia.973. DOI
Quantification of STEM Images in High Resolution SEM for Segmented and Pixelated Detectors