Low-Energy Electron Inelastic Mean Free Path of Graphene Measured by a Time-of-Flight Spectrometer

. 2021 Sep 18 ; 11 (9) : . [epub] 20210918

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578750

The detailed examination of electron scattering in solids is of crucial importance for the theory of solid-state physics, as well as for the development and diagnostics of novel materials, particularly those for micro- and nanoelectronics. Among others, an important parameter of electron scattering is the inelastic mean free path (IMFP) of electrons both in bulk materials and in thin films, including 2D crystals. The amount of IMFP data available is still not sufficient, especially for very slow electrons and for 2D crystals. This situation motivated the present study, which summarizes pilot experiments for graphene on a new device intended to acquire electron energy-loss spectra (EELS) for low landing energies. Thanks to its unique properties, such as electrical conductivity and transparency, graphene is an ideal candidate for study at very low energies in the transmission mode of an electron microscope. The EELS are acquired by means of the very low-energy electron microspectroscopy of 2D crystals, using a dedicated ultra-high vacuum scanning low-energy electron microscope equipped with a time-of-flight (ToF) velocity analyzer. In order to verify our pilot results, we also simulate the EELS by means of density functional theory (DFT) and the many-body perturbation theory. Additional DFT calculations, providing both the total density of states and the band structure, illustrate the graphene loss features. We utilize the experimental EELS data to derive IMFP values using the so-called log-ratio method.

Zobrazit více v PubMed

Standard E 673, Annual Book of the ASTM Standards, American Society for Testing and Materials. Vol. 3.06 ASTM; West Conshohocken, PA, USA: 1998.

Koralek J.D., Douglas J.F., Plumb N.C., Griffith J.D., Cundiff S.T., Kapteyn H.C., Murnane M.M., Dessau D.S. Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 2007;78:053905. doi: 10.1063/1.2722413. PubMed DOI

Seah M.P., Dench W.A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979;1:0142–2421. doi: 10.1002/sia.740010103. DOI

Zdyb R., Menteş T.O., Locatelli A., Niño M.A., Bauer E. Inelastic mean free path from reflectivity of slow electrons. Phys. Rev. B. 2013;87:075436. doi: 10.1103/PhysRevB.87.075436. DOI

Werner W.S.M. Questioning a Universal Law for Electron Attenuation. Physics. 2019;12:93. doi: 10.1103/Physics.12.93. DOI

Frank L., Mikmeková E., Müllerová I., Lejeune M. Counting graphene layers with very slow electrons. Appl. Phys. Lett. 2015;106:013117. doi: 10.1063/1.4905221. DOI

Vos M., Grande P.L. How the choice of model dielectric function affects the calculated observables. Nucl. Instrum. Meth. B. 2017;407:97–109. doi: 10.1016/j.nimb.2017.05.064. DOI

Emfietzoglou D., Kyriakou I., Garcia-Molina R., Abril I. Inelastic mean free path of low-energy electrons in condensed media: Beyond the standard models. Surf. Interface Anal. 2017;49:4–10. doi: 10.1002/sia.5878. DOI

Chanther C.T., Bourke J.D. Low-energy electron properties: Electron inelastic mean free path, energy loss function and the dielectric function. Recent measurements, applications, and the plasmon-coupling theory. Ultramicroscopy. 2019;201:38–48. doi: 10.1016/j.ultramic.2019.03.014. PubMed DOI

Bauer E. Surface microscopy with low energy electrons: LEEM. J. Electron. Spectrosc. Relat. Phenom. 2020;241:146806. doi: 10.1016/j.elspec.2018.11.005. DOI

Bauer E. Surface Microscopy with Low Energy Electrons. 1st ed. Springer; New York, NY, USA: 2014. Basic Interactions; pp. 21–88. DOI

Geelen D., Jobst J., Krasovskii E.E., van der Molen S.J., Tromp R.M. Nonuniversal Transverse Electron Mean Free Path through Few-layer Graphene. Phys. Rev. Lett. 2019;123:086802. doi: 10.1103/PhysRevLett.123.086802. PubMed DOI

Werner W.S.M., Smekal W., Tomastik C., Störi H. Surface excitation probability of medium energy electrons in metals and semiconductors. Surf. Sci. 2001;486:L461–L466. doi: 10.1016/S0039-6028(01)01091-3. DOI

Pauly N., Tougaard S. Surface and core hole effects in X-ray photoelectron spectroscopy. Surf. Sci. 2010;604:1193–1196. doi: 10.1016/j.susc.2010.04.001. DOI

Zemek J., Houdkova J., Jiricek P., Izak T., Kalbac M. Non-destructive depth profile reconstruction of single-layer graphene using angle-resolved X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2019;491:16–23. doi: 10.1016/j.apsusc.2019.06.083. DOI

Xu M., Fujita D., Chen H., Hanagata N. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation. Nonoscale. 2011;3:2854–2858. doi: 10.1039/c1nr10294j. PubMed DOI

Sugimoto T., Kimura K. Stability of Graphene Oxide Film to Electron Beam Irradiation and Possible Thickness Dependence of Electron Attenuation. Bull. Chem. Soc. Jpn. 2013;86:333–338. doi: 10.1246/bcsj.20120267. DOI

Graber T., Foster F., Schöll A., Reinert F. Experimental determination of the attenuation length of electrons in organic molecular solids: The example of PTCDA. Surf. Sci. 2011;605:878–882. doi: 10.1016/j.susc.2011.01.033. DOI

Locatelli A., Zamborlini G., Mentes T.O. Growth of single and multi-layer graphene on Ir(100) Carbon. 2014;74:237–248. doi: 10.1016/j.carbon.2014.03.028. DOI

Iacobucci S., Offi F., Torelli P., Petaccia L. Effective attenuation lengths of low energy electrons in MgO thin films. J. Electron. Spectrosc. Relat. Phenom. 2019;233:1–4. doi: 10.1016/j.elspec.2019.03.002. DOI

Werner W.S.M., Bellissimo A., Leber R., Ashraf A., Segui S. Reflection electron energy loss spectrum of single layer graphene measured on a graphite substrate. Surf. Sci. 2015;635:L1–L3. doi: 10.1016/j.susc.2014.12.016. DOI

Zdyb R., Bauer E. Spin-resolved inelastic mean free path of slow electrons in Fe. J. Phys. Condens. Matter. 2013;25:272201. doi: 10.1088/0953-8984/25/27/272201. PubMed DOI

Romanyuk O., Bartoš I. Electron attenuation anisotropy at crystal surfaces from LEED. Surf. Sci. 2009;603:2789–2792. doi: 10.1016/j.susc.2009.07.024. DOI

Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 1994;21:165–176. doi: 10.1002/sia.1997. DOI

Gries W.H. A Universal Predictive Equation for the Inelastic Mean Free Pathlengths of X-ray Photoelectrons and Auger Electrons. Surf. Interface Anal. 1996;24:38–50. doi: 10.1002/(SICI)1096-9918(199601)24:1<38::AID-SIA84>3.0.CO;2-H. DOI

Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 1930;397:325–400. doi: 10.1002/andp.19303970303. DOI

Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range. Surf. Interface Anal. 1991;17:911–926. doi: 10.1002/sia.740171304. DOI

Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. VIII. Data for 15 elemental solids over the 50–2000 eV range. Surf. Interface Anal. 2005;37:1–14. doi: 10.1002/sia.1997. DOI

Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range. Surf. Interface Anal. 1991;17:927–939. doi: 10.1002/sia.1997. PubMed DOI PMC

Reimer L. Electron Spectroscopic Imaging. In: Reimer L., editor. Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences. Volume 71. Springer; Berlin/Heidelberg, Germany: 1995. DOI

Hofmann S. Electron Energy Analyzer. In: Springer Series in Surface ScienceErtl G., Lüth H., Mills D.G., editors. Auger- and X-ray Photoelectron Spectroscopy in Materials Science. 49th ed. Volume 49. Springer; Berlin/Heidelberg, Germany: 2013. pp. 29–39.

Müllerová I., Frank L. Scanning low energy electron microscopy. In: Hawkes P.W., editor. Advances in Imaging and Electron Physics. Volume 128. Elsevier; San Diego, CA, USA: 2003. pp. 309–443.

Cai Y.H., Lai Y.H., Wang Y.S. Coupled Space- and Velocity-Focusing in Time-of-Flight Mass Spectrometry—A Comprehensive Theoretical Investigation. J. Am. Soc. Mass Spectrom. 2015;26:1722–1731. doi: 10.1007/s13361-015-1206-y. PubMed DOI

Amjadipour M., MacLeod J., Lipton-Duffin J., Tadich A., Boeckl J.J., Iacopi F., Motta N. Electron effective attenuation length in epitaxial graphene on SiC. Nanotechnology. 2019;30:025704. doi: 10.1088/1361-6528/aae7ec. PubMed DOI

Calliari L., Dapor M., Garberoglio G., Fanchenko S. Momentum transfer dependence of reflection electron energy loss spectra: Theory and experiment. Surf. Interface Anal. 2014;46:340–349. doi: 10.1002/sia.5495. DOI

Calliari L., Fanchenko S. The spatial extent of surface effects on electron inelastic scattering. Surf. Interface Anal. 2016;48:580–583. doi: 10.1002/sia.5884. DOI

Konvalina I., Daniel B., Zouhar M., Piňos J., Radlička T., Frank L., Müllerová I., Mikmeková E.M. Studying 2D Materials by Means of Microscopy and Spectroscopy with Low Energy Electrons. Microsc. Microanal. 2019;25:482–483. doi: 10.1017/S1431927619003143. DOI

DIGUN—Schottky Electron Gun DIGUN. [(accessed on 18 August 2021)]. Available online: https://www.delong.cz/products/electron-guns/

Konvalina I., Müllerová I. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens. Nucl. Instrum. Methods Phys. Res. Sect. A. 2011;645:55–59. doi: 10.1016/j.nima.2010.12.232. DOI

Cameron A.E., Eggers D.F. An Ion “Velocitron”. Rev. Sci. Instrum. 1948;19:605. doi: 10.1063/1.1741336. DOI

RoentDek Delayline Detectors. [(accessed on 18 August 2021)]. Available online: www.roentdek.com/detectors/

Verhoeven W., van Rens J.F., Van Ninhuijs M.A., Toonen W.F., Kieft E.R., Mutsaers P.H., Luiten O.J. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities. Struct. Dyn. 2016;3:054303. doi: 10.1063/1.4962698. PubMed DOI PMC

Richardson W.H. Bayesian-Based Iterative Method of Image Restoration. J. Opt. Soc. Am. 1972;62:55–59. doi: 10.1364/JOSA.62.000055. DOI

Lucy L.B. An iterative technique for the rectification of observed distributions. Astron. J. 1974;79:745. doi: 10.1086/111605. DOI

Eilers P.H.C. A Perfect Smoother. Anal. Chem. 2003;75:3631–3636. doi: 10.1021/ac034173t. PubMed DOI

Boelens H.F.M., Dijkstra R.J., Eilers P.H.C., Fitzpatrick F., Westerhuis J.A. New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. J. Chroma. A. 2004;1057:21–30. doi: 10.1016/j.chroma.2004.09.035. PubMed DOI

Egerton R.F. Electron. Energy-Loss Spectroscopy in the Electron. Microscope. 2nd ed. Springer Science & Business Media; New York, NY, USA: 1996.

Harris C.R., Millman K.J., van der Walt S.J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N.J., et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC

Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261. doi: 10.1038/s41592-020-0772-5. PubMed DOI PMC

Hunter J.D. Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

De La Peña F., Prestat E., Tonaas Fauske V., Burdet P., Furnival T., Jokubauskas P., Nord M., Ostasevicius T., MacArthur K.E., Johnstone D.N., et al. Hyperspy/hyperspy: Release v1.6.1. Zenodo. :2021. doi: 10.5281/ZENODO.4683076. DOI

Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI

Hamann D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B. 2013;88:085117. doi: 10.1103/PhysRevB.88.085117. DOI

N’Diaye A.T., Coraux J., Plasa T.N., Busse C., Michely T. Structure of epitaxial graphene on Ir(111) New J. Phys. 2008;10:043033. doi: 10.1088/1367-2630/10/4/043033. DOI

Baskin Y., Meyer L. Lattice Constants of Graphite at Low Temperatures. Phys. Rev. 1955;100:544. doi: 10.1103/PhysRev.100.544. DOI

Marini A., Hogan C., Grüning M., Varsano D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 2009;180:1392–1403. doi: 10.1016/j.cpc.2009.02.003. DOI

PELCO® Graphene & Graphene Oxide Films. [(accessed on 18 August 2021)]. Available online: https://www.tedpella.com/Support_Films_html/Graphene-TEM-Support-Film.htm.

Sunaoshi T., Kaji K., Orai Y., Schamp C.T., Voelkl E. STEM/SEM, Chemical Analysis, Atomic Resolution and Surface Imaging At ≤30 kV with No Aberration Correction for Nanomaterials on Graphene Support. Microsc. Microanal. 2016;22((Suppl. 3)):604–605. doi: 10.1017/S1431927616003871. DOI

Trickey S.B., Müller-Plathe F., Diercksen G.H.F., Boettger J.C. Interplanar binding and lattice relaxation in a graphite delayer. Phys. Rev. B. 1992;45:4460–4468. doi: 10.1103/PhysRevB.45.4460. PubMed DOI

Trevisanutto P.E., Giorgetti C., Reining L., Ladisa M., Olevano V. Ab Initio GW Many-Body Effects in Graphene. Phys. Rev. Lett. 2008;101:226405. doi: 10.1103/PhysRevLett.101.226405. PubMed DOI

Zhang Y., Tan Y.W., Stormer H.L., Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201. doi: 10.1038/nature04235. PubMed DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Waschmuth P., Hambach R., Kinyanjui M.K., Guzzo M., Benner G., Kaiser U. High-energy collective electronic excitations in free-standing single-layer graphene. Phys. Rev. B. 2013;88:075433. doi: 10.1103/PhysRevB.88.075433. DOI

Werner W.S., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. Secondary Electron Emission by Plasmon-Induced Symmetry Breaking in Highly Oriented Pyrolytic Graphite. Phys. Rev. Lett. 2020;125:196603. doi: 10.1103/PhysRevLett.125.196603. PubMed DOI

Lu J., Loh K.P., Huang H., Chen W., Wee A.T.S. Plasmon dispersion on epitaxial graphene studied using high-resolution electron energy-loss spectroscopy. Phys. Rev. B. 2009;80:113410. doi: 10.1103/PhysRevB.80.113410. DOI

Wachsmuth P., Hambach R., Benner G., Kaiser U. Plasmon bands in multilayer graphene. Phys. Rev. B. 2014;90:235434. doi: 10.1103/PhysRevB.90.235434. DOI

Liou S.C., Shie C.S., Chen C.H., Breitwieser R., Pai W.W., Guo G.Y., Chu M.W. π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy. Phys. Rev. B. 2015;91:045418. doi: 10.1103/PhysRevB.91.045418. DOI

Gao Y., Yuan Z. Anisotropic low-energy plasmon excitations in doped graphene: An ab initio study. Solid State Commun. 2011;151:1009–1013. doi: 10.1016/j.ssc.2011.05.001. DOI

Mowbray D.J. Theoretical electron energy loss spectroscopy of isolated graphene. Phys. Status Solidi B. 2014;251:2509–2514. doi: 10.1002/pssb.201451174. DOI

Warmbier R., Quandt A. Plasmonic and dielectric properties of ideal graphene. Comput. Mater. Sci. 2016;114:18–22. doi: 10.1016/j.commatsci.2015.12.012. DOI

Hambach R. Ph.D. Thesis. Ecole Polytechnique X, Ecole Polytechnique; Palaiseau, France: 2020. Theory and Ab-Initio Calculations of Collective Excitations in Nanostructures: Towards Spatially-Resolved EELS.

Nazarov V.U. Electronic excitations in quasi-2D crystals: What theoretical quantities are relevant to experiment? New. J. Phys. 2015;17:073018.

Despoja V., Novko D., Dekanić K., Šunjić M., Marušić L. Two-dimensional and π plasmon spectra in pristine and doped graphene. Phys. Rev. B. 2013;87:075447. doi: 10.1103/PhysRevB.87.075447. DOI

Da B., Sun Y., Hou Z., Liu J., Cuong N.T., Tsukagoshi K., Yoshikawa H., Tanuma S., Hu J., Gao Z., et al. Measurement of the Low-Energy Electron Inelastic Mean Free Path in Monolayer Graphene. Phys. Rev. Appl. 2020;13:044055. doi: 10.1103/PhysRevApplied.13.044055. DOI

Horing N.J.M., Iurov A., Gumbs G., Politano A., Chiarello G. Recent Progress on Nonlocal Graphene/Surface Plasmons. In: Ünlü H., Horing N.J.M., Dabowski J., editors. Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer; Cham, Switzerland: 2016. pp. 205–237. DOI

Werner W.S.M. Electron transport in solids for quantitative surface analysis. Surf. Interface Anal. 2001;31:141–176. doi: 10.1002/sia.973. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quantification of STEM Images in High Resolution SEM for Segmented and Pixelated Detectors

. 2021 Dec 28 ; 12 (1) : . [epub] 20211228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...