Isolation of plastids and mitochondria from Chromera velia

. 2019 Nov ; 250 (5) : 1731-1741. [epub] 20190817

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31422509

Grantová podpora
15-17643S Grantová Agentura České Republiky
16-24027S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759 ERDF/ESF Centre for research of pathogenicity and virulence of parasites

Odkazy

PubMed 31422509
DOI 10.1007/s00425-019-03259-3
PII: 10.1007/s00425-019-03259-3
Knihovny.cz E-zdroje

We present an easy and effective procedure to purify plastids and mitochondria from Chromera velia. Our method enables downstream analyses of protein and metabolite content of the organelles. Chromerids are alveolate algae that are the closest known phototrophic relatives to apicomplexan parasites such as Plasmodium or Toxoplasma. While genomic and transcriptomic resources for chromerids are in place, tools and experimental conditions for proteomic studies have not been developed yet. Here we describe a rapid and efficient protocol for simultaneous isolation of plastids and mitochondria from the chromerid alga Chromera velia. This procedure involves enzymatic treatment and breakage of cells, followed by differential centrifugation. While plastids sediment in the first centrifugation step, mitochondria remain in the supernatant. Subsequently, plastids can be purified from the crude pellet by centrifugation on a discontinuous 60%/70% sucrose density gradient, while mitochondria can be obtained by centrifugation on a discontinuous 33%/80% Percoll density gradient. Isolated plastids are autofluorescent, and their multi-membrane structure was confirmed by transmission electron microscopy. Fluorescent optical microscopy was used to identify isolated mitochondria stained with MitoTrackerTM green, while their intactness and membrane potential were confirmed by staining with MitoTrackerTM orange CMTMRos. Total proteins were extracted from isolated organellar fractions, and the purity of isolated organelles was confirmed using immunoblotting. Antibodies against the beta subunit of the mitochondrial ATP synthase and the plastid protochlorophyllide oxidoreductase did not cross-react on immunoblots, suggesting that each organellar fraction is free of the residues of the other. The presented protocol represents an essential step for further proteomic, organellar, and cell biological studies of C. velia and can be employed, with minor optimizations, in other thick-walled unicellular algae.

Zobrazit více v PubMed

Angelova A, Park SH, Kyndt J et al (2014) Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for Illumina genome sequencing. J Appl Phycol 26:209–218. https://doi.org/10.1007/s10811-013-0125-1 DOI

Botte CY, Yamaryo-Botte Y, Rupasinghe TWT et al (2013) A typical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci USA 110:7506–7511. https://doi.org/10.1073/pnas.1301251110 PubMed DOI

Calvayrac R, Laval-Martin D, Briand J, Farineau J (1981) Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O PubMed DOI

Choo K, Tan T, Ranganathan S (2009) A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinform 10:S2. https://doi.org/10.1186/1471-2105-10-S15-S2 DOI

Flegontov P, Michálek J, Janouškovec J et al (2015) Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol 32:1115–1131. https://doi.org/10.1093/molbev/msv021 PubMed DOI

Füssy Z, Oborník M (2017) Chromerids and their plastids. Adv Bot Res 84:187–218 DOI

Füssy Z, Faitová T, Oborník M (2019) Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genome Biol Evol 11(7):1765–1779. https://doi.org/10.1093/gbe/evz123 PubMed DOI PMC

Gilmore K, Wilson M (1999) The use of chloromethyl-X-rosamine (mitotracker red) to measure loss of mitochondrial membrane potential in apoptotic cells is incompatible with cell fixation. Cytometry 36:355–358. https://doi.org/10.1002/(SICI)1097-0320(19990801)36:4%3c355:AID-CYTO11%3e3.0.CO;2-9 PubMed DOI

Goodman CD, Pasaje CFA, Kennedy K et al (2016) Targeting protein translation in organelles of the Apicomplexa. Trends Parasitol 32:953–965 DOI

Gruber A, Rocap G, Kroth PG et al (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528. https://doi.org/10.1111/tpj.12734 PubMed DOI PMC

Hikosaka K, Kita K, Tanabe K (2013) Diversity of mitochondrial genome structure in the phylum apicomplexa. Mol Biochem Parasitol 188:26–33. https://doi.org/10.1016/j.molbiopara.2013.02.006 PubMed DOI

Hopkins J, Fowler R, Krishna S et al (1999) The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist 150:283–295. https://doi.org/10.1016/S1434-4610(99)70030-1 PubMed DOI

Islam MS, Takagi S (2010) Co-localization of mitochondria with chloroplasts is a light-dependent reversible response. Plant Signal Behav 5:146–147. https://doi.org/10.4161/psb.5.2.10410 PubMed DOI PMC

Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954. https://doi.org/10.1073/pnas.1003335107 PubMed DOI

Janouškovec J, Horák A, Barott KL et al (2012) Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr Biol. https://doi.org/10.1016/j.cub.2012.04.047 PubMed DOI

Janouškovec J, Horák A, Barott KL et al (2013) Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J 7:444–447. https://doi.org/10.1038/ismej.2012.129 PubMed DOI

Janouškovec J, Tikhonenkov DV, Burki F et al (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci USA 112:10200–10207. https://doi.org/10.1073/pnas.1423790112 PubMed DOI

Kopečná J, Sobotka R, Komenda J (2013) Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of photosystem I and photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta 237:497–508. https://doi.org/10.1007/s00425-012-1761-4 PubMed DOI

Lang EGE, Mueller SJ, Hoernstein SNW et al (2011) Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics. Plant Cell Rep 30:205–215. https://doi.org/10.1007/s00299-010-0935-4 PubMed DOI

Logan DC, Millar AH, Sweetlove LJ, Hill SA, Leaver CJ (2001) Mitochondrial biogenesis during germination in maize embryos. Plant Physiol 125:662–672. https://doi.org/10.1104/pp.125.2.662 PubMed DOI PMC

Mason CB, Bricker TM, Moroney JV (2006) A rapid method for chloroplast isolation from the green alga Chlamydomonas reinhardtii. Nat Protoc 1:2227–2230. https://doi.org/10.1038/nprot.2006.348 PubMed DOI

Métivier D, Dallaporta B, Zamzami N et al (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163. https://doi.org/10.1016/S0165-2478(98)00013-3 PubMed DOI

Molloy MP, Herbert BR, Walsh BJ et al (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19:837–844. https://doi.org/10.1002/elps.1150190539 PubMed DOI

Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 452:959–963. https://doi.org/10.1038/nature06871 DOI

Moreno-Rojas JM, Moreno-Ortega A, Ordóñez JL et al (2018) Development and validation of UHPLC-HRMS methodology for the determination of flavonoids, amino acids and organosulfur compounds in black onion, a novel derived product from fresh shallot onions (Allium cepa var. aggregatum). LWT 97:376–383. https://doi.org/10.1016/j.lwt.2018.07.032 DOI

Nash EA, Nisbet RER, Barbrook AC, Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335 DOI

Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144. https://doi.org/10.1146/annurev-micro-091014-104449 PubMed DOI

Oborník M, Janouškovec J, Chrudimský T, Lukeš J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39:1–12 DOI

Oborník M, Vancová M, Lai DH et al (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162:115–130. https://doi.org/10.1016/j.protis.2010.02.004 PubMed DOI

Oborník M, Modrý D, Lukeš M et al (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the great barrier reef. Protist 163:306–323. https://doi.org/10.1016/j.protis.2011.09.001 PubMed DOI

Pan H, Šlapeta J, Carter D, Chen M (2013) Isolation of complete chloroplasts from Chromera Velia—the photosynthetic relative of parasitic apicomplexa. Photosynthesis research for food, fuel and the future. Advanced topics in science and technology in China. Springer, Berlin, pp 436–439 DOI

Pietruszka M, Lewicka S (2007) Effect of temperature on plant elongation and cell wall extensibility. Gen Physiol Biophys 26:40–47 PubMed

Poot M, Zhang YZ, Krämer JA et al (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372. https://doi.org/10.1177/44.12.8985128 PubMed DOI

Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. https://doi.org/10.1083/jcb.17.1.208 PubMed DOI PMC

Satori CP, Kostal V, Arriaga EA (2012) Review on recent advances in the analysis of isolated organelles. Anal Chim Acta 753:8–18 DOI

Schober AF, Río Bártulos C, Bischoff A et al (2019) Organelle studies and proteome analyses on mitochondria and plastids fractions from the diatom Thalassiosira pseudonana. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcz097 PubMed DOI PMC

Segui-Simarro JM, Coronado MJ, Staehelin LA (2008) The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells Is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol 148:1380–1393. https://doi.org/10.1104/pp.108.126953 PubMed DOI PMC

Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ (2007) The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both Apicomplexan and Dinoflagellate mitochondrial genomes. J Mol Biol 372:356–368. https://doi.org/10.1016/j.jmb.2007.06.085 PubMed DOI

Sobotka R, Esson HJ, Koník P et al (2017) Extensive gain and loss of photosystem i subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 7:13214. https://doi.org/10.1038/s41598-017-13575-x PubMed DOI PMC

Sperschneider J, Catanzariti AM, Deboer K et al (2017) LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 7:44598. https://doi.org/10.1038/srep44598 PubMed DOI PMC

Šubrtová K, Panicucci B, Zíková A (2015) ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog 11:e1004660. https://doi.org/10.1371/journal.ppat.1004660 PubMed DOI PMC

Takishita K, Yamaguchi H, Maruyama T, Inagaki Y (2009) A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in “chromalveolate” members. PLoS One 4:e4737. https://doi.org/10.1371/journal.pone.0004737 PubMed DOI PMC

Tomčala A, Kyselová V, Schneedorferová I et al (2017) Separation and identification of lipids in the photosynthetic cousins of apicomplexa Chromera velia and Vitrella brassicaformis. J Sep Sci 40:3402–3413. https://doi.org/10.1002/jssc.201700171 PubMed DOI

Vazač J, Füssy Z, Hladová I et al (2018) Ploidy and number of chromosomes in the alveolate alga Chromera velia. Protist 169:53–63. https://doi.org/10.1016/j.protis.2017.12.001 PubMed DOI

Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245. https://doi.org/10.1002/bies.200800164 PubMed DOI

Waller RF, Kořený L (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Adv Bot Res 84:105–143 DOI

Woo YH, Ansari H, Otto TD et al (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife 4:1–41. https://doi.org/10.7554/eLife.06974 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace