Isolation of plastids and mitochondria from Chromera velia
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-17643S
Grantová Agentura České Republiky
16-24027S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759
ERDF/ESF Centre for research of pathogenicity and virulence of parasites
PubMed
31422509
DOI
10.1007/s00425-019-03259-3
PII: 10.1007/s00425-019-03259-3
Knihovny.cz E-zdroje
- Klíčová slova
- Chromerids, Isolation, Microalgae, Mitochondrion, Plastid,
- MeSH
- Alveolata ultrastruktura MeSH
- mikrořasy ultrastruktura MeSH
- mitochondrie ultrastruktura MeSH
- plastidy ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
We present an easy and effective procedure to purify plastids and mitochondria from Chromera velia. Our method enables downstream analyses of protein and metabolite content of the organelles. Chromerids are alveolate algae that are the closest known phototrophic relatives to apicomplexan parasites such as Plasmodium or Toxoplasma. While genomic and transcriptomic resources for chromerids are in place, tools and experimental conditions for proteomic studies have not been developed yet. Here we describe a rapid and efficient protocol for simultaneous isolation of plastids and mitochondria from the chromerid alga Chromera velia. This procedure involves enzymatic treatment and breakage of cells, followed by differential centrifugation. While plastids sediment in the first centrifugation step, mitochondria remain in the supernatant. Subsequently, plastids can be purified from the crude pellet by centrifugation on a discontinuous 60%/70% sucrose density gradient, while mitochondria can be obtained by centrifugation on a discontinuous 33%/80% Percoll density gradient. Isolated plastids are autofluorescent, and their multi-membrane structure was confirmed by transmission electron microscopy. Fluorescent optical microscopy was used to identify isolated mitochondria stained with MitoTrackerTM green, while their intactness and membrane potential were confirmed by staining with MitoTrackerTM orange CMTMRos. Total proteins were extracted from isolated organellar fractions, and the purity of isolated organelles was confirmed using immunoblotting. Antibodies against the beta subunit of the mitochondrial ATP synthase and the plastid protochlorophyllide oxidoreductase did not cross-react on immunoblots, suggesting that each organellar fraction is free of the residues of the other. The presented protocol represents an essential step for further proteomic, organellar, and cell biological studies of C. velia and can be employed, with minor optimizations, in other thick-walled unicellular algae.
Faculty of Science University of South Bohemia Branišovská 31 37005 České Budějovice Czech Republic
Genetic Department Faculty of Agriculture Ain Shams University Cairo 11241 Egypt
Institute of Parasitology Biology Centre CAS Branišovská 31 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Angelova A, Park SH, Kyndt J et al (2014) Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for Illumina genome sequencing. J Appl Phycol 26:209–218. https://doi.org/10.1007/s10811-013-0125-1 DOI
Botte CY, Yamaryo-Botte Y, Rupasinghe TWT et al (2013) A typical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci USA 110:7506–7511. https://doi.org/10.1073/pnas.1301251110 PubMed DOI
Calvayrac R, Laval-Martin D, Briand J, Farineau J (1981) Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O PubMed DOI
Choo K, Tan T, Ranganathan S (2009) A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinform 10:S2. https://doi.org/10.1186/1471-2105-10-S15-S2 DOI
Flegontov P, Michálek J, Janouškovec J et al (2015) Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol 32:1115–1131. https://doi.org/10.1093/molbev/msv021 PubMed DOI
Füssy Z, Oborník M (2017) Chromerids and their plastids. Adv Bot Res 84:187–218 DOI
Füssy Z, Faitová T, Oborník M (2019) Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genome Biol Evol 11(7):1765–1779. https://doi.org/10.1093/gbe/evz123 PubMed DOI PMC
Gilmore K, Wilson M (1999) The use of chloromethyl-X-rosamine (mitotracker red) to measure loss of mitochondrial membrane potential in apoptotic cells is incompatible with cell fixation. Cytometry 36:355–358. https://doi.org/10.1002/(SICI)1097-0320(19990801)36:4%3c355:AID-CYTO11%3e3.0.CO;2-9 PubMed DOI
Goodman CD, Pasaje CFA, Kennedy K et al (2016) Targeting protein translation in organelles of the Apicomplexa. Trends Parasitol 32:953–965 DOI
Gruber A, Rocap G, Kroth PG et al (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528. https://doi.org/10.1111/tpj.12734 PubMed DOI PMC
Hikosaka K, Kita K, Tanabe K (2013) Diversity of mitochondrial genome structure in the phylum apicomplexa. Mol Biochem Parasitol 188:26–33. https://doi.org/10.1016/j.molbiopara.2013.02.006 PubMed DOI
Hopkins J, Fowler R, Krishna S et al (1999) The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist 150:283–295. https://doi.org/10.1016/S1434-4610(99)70030-1 PubMed DOI
Islam MS, Takagi S (2010) Co-localization of mitochondria with chloroplasts is a light-dependent reversible response. Plant Signal Behav 5:146–147. https://doi.org/10.4161/psb.5.2.10410 PubMed DOI PMC
Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954. https://doi.org/10.1073/pnas.1003335107 PubMed DOI
Janouškovec J, Horák A, Barott KL et al (2012) Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr Biol. https://doi.org/10.1016/j.cub.2012.04.047 PubMed DOI
Janouškovec J, Horák A, Barott KL et al (2013) Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J 7:444–447. https://doi.org/10.1038/ismej.2012.129 PubMed DOI
Janouškovec J, Tikhonenkov DV, Burki F et al (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci USA 112:10200–10207. https://doi.org/10.1073/pnas.1423790112 PubMed DOI
Kopečná J, Sobotka R, Komenda J (2013) Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of photosystem I and photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta 237:497–508. https://doi.org/10.1007/s00425-012-1761-4 PubMed DOI
Lang EGE, Mueller SJ, Hoernstein SNW et al (2011) Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics. Plant Cell Rep 30:205–215. https://doi.org/10.1007/s00299-010-0935-4 PubMed DOI
Logan DC, Millar AH, Sweetlove LJ, Hill SA, Leaver CJ (2001) Mitochondrial biogenesis during germination in maize embryos. Plant Physiol 125:662–672. https://doi.org/10.1104/pp.125.2.662 PubMed DOI PMC
Mason CB, Bricker TM, Moroney JV (2006) A rapid method for chloroplast isolation from the green alga Chlamydomonas reinhardtii. Nat Protoc 1:2227–2230. https://doi.org/10.1038/nprot.2006.348 PubMed DOI
Métivier D, Dallaporta B, Zamzami N et al (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163. https://doi.org/10.1016/S0165-2478(98)00013-3 PubMed DOI
Molloy MP, Herbert BR, Walsh BJ et al (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19:837–844. https://doi.org/10.1002/elps.1150190539 PubMed DOI
Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 452:959–963. https://doi.org/10.1038/nature06871 DOI
Moreno-Rojas JM, Moreno-Ortega A, Ordóñez JL et al (2018) Development and validation of UHPLC-HRMS methodology for the determination of flavonoids, amino acids and organosulfur compounds in black onion, a novel derived product from fresh shallot onions (Allium cepa var. aggregatum). LWT 97:376–383. https://doi.org/10.1016/j.lwt.2018.07.032 DOI
Nash EA, Nisbet RER, Barbrook AC, Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335 DOI
Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144. https://doi.org/10.1146/annurev-micro-091014-104449 PubMed DOI
Oborník M, Janouškovec J, Chrudimský T, Lukeš J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39:1–12 DOI
Oborník M, Vancová M, Lai DH et al (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162:115–130. https://doi.org/10.1016/j.protis.2010.02.004 PubMed DOI
Oborník M, Modrý D, Lukeš M et al (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the great barrier reef. Protist 163:306–323. https://doi.org/10.1016/j.protis.2011.09.001 PubMed DOI
Pan H, Šlapeta J, Carter D, Chen M (2013) Isolation of complete chloroplasts from Chromera Velia—the photosynthetic relative of parasitic apicomplexa. Photosynthesis research for food, fuel and the future. Advanced topics in science and technology in China. Springer, Berlin, pp 436–439 DOI
Pietruszka M, Lewicka S (2007) Effect of temperature on plant elongation and cell wall extensibility. Gen Physiol Biophys 26:40–47 PubMed
Poot M, Zhang YZ, Krämer JA et al (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372. https://doi.org/10.1177/44.12.8985128 PubMed DOI
Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. https://doi.org/10.1083/jcb.17.1.208 PubMed DOI PMC
Satori CP, Kostal V, Arriaga EA (2012) Review on recent advances in the analysis of isolated organelles. Anal Chim Acta 753:8–18 DOI
Schober AF, Río Bártulos C, Bischoff A et al (2019) Organelle studies and proteome analyses on mitochondria and plastids fractions from the diatom Thalassiosira pseudonana. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcz097 PubMed DOI PMC
Segui-Simarro JM, Coronado MJ, Staehelin LA (2008) The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells Is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol 148:1380–1393. https://doi.org/10.1104/pp.108.126953 PubMed DOI PMC
Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ (2007) The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both Apicomplexan and Dinoflagellate mitochondrial genomes. J Mol Biol 372:356–368. https://doi.org/10.1016/j.jmb.2007.06.085 PubMed DOI
Sobotka R, Esson HJ, Koník P et al (2017) Extensive gain and loss of photosystem i subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 7:13214. https://doi.org/10.1038/s41598-017-13575-x PubMed DOI PMC
Sperschneider J, Catanzariti AM, Deboer K et al (2017) LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 7:44598. https://doi.org/10.1038/srep44598 PubMed DOI PMC
Šubrtová K, Panicucci B, Zíková A (2015) ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog 11:e1004660. https://doi.org/10.1371/journal.ppat.1004660 PubMed DOI PMC
Takishita K, Yamaguchi H, Maruyama T, Inagaki Y (2009) A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in “chromalveolate” members. PLoS One 4:e4737. https://doi.org/10.1371/journal.pone.0004737 PubMed DOI PMC
Tomčala A, Kyselová V, Schneedorferová I et al (2017) Separation and identification of lipids in the photosynthetic cousins of apicomplexa Chromera velia and Vitrella brassicaformis. J Sep Sci 40:3402–3413. https://doi.org/10.1002/jssc.201700171 PubMed DOI
Vazač J, Füssy Z, Hladová I et al (2018) Ploidy and number of chromosomes in the alveolate alga Chromera velia. Protist 169:53–63. https://doi.org/10.1016/j.protis.2017.12.001 PubMed DOI
Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245. https://doi.org/10.1002/bies.200800164 PubMed DOI
Waller RF, Kořený L (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Adv Bot Res 84:105–143 DOI
Woo YH, Ansari H, Otto TD et al (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife 4:1–41. https://doi.org/10.7554/eLife.06974 DOI