Predicting p Ka values from EEM atomic charges
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM071872
NIGMS NIH HHS - United States
U01 GM094612
NIGMS NIH HHS - United States
U54 GM094618
NIGMS NIH HHS - United States
PubMed
23574978
PubMed Central
PMC3663834
DOI
10.1186/1758-2946-5-18
PII: 1758-2946-5-18
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
: The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Ka predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM QSPR models constitute a fast and accurate p Ka prediction approach that can be used in virtual screening.
Zobrazit více v PubMed
Ishihama Y, Nakamura M, Miwa T, Kajima T, Asakawa N. A rapid method for pKa determination of drugs using pressure-assisted capillary electrophoresis with photodiode array detection in drug discovery. J Pharm Sci. 2002;91(4):933–942. doi: 10.1002/jps.10087. PubMed DOI
Babić S Determination of pKa values of active pharmaceutical ingredients. TrAC. 2007;26(11):1043–1061.
Manallack D. The pKKa distribution of drugs: application to drug discovery. Perspect Med Chem. 2007;1:25–38. PubMed PMC
Wan H, Ulander J. High-throughput pKa screening and prediction amenable for ADME profiling. Expert Opin Drug Metabx Toxicol. 2006;2:139–155. doi: 10.1517/17425255.2.1.139. PubMed DOI
Cruciani G, Milletti F, Storchi L, Sforna G, Goracci L. In silico pKa prediction and ADME profiling. Chem Biodivers. 2009;6(11):1812–1821. doi: 10.1002/cbdv.200900153. PubMed DOI
Comer J, Tam K: Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical, and Computational Strategies. Switzerland: Wiley-VCH, Verlag Helvetica Chimica Acta, Postfach, CH-8042 Zürich; 2001
Klebe G. Recent developments in structure-based drug design. J Mol Med. 2000;78:269–281. doi: 10.1007/s001090000084. PubMed DOI
Lee AC, Crippen GM. Predicting pKa. J Chem Inf Model. 2009;49:2013–2033. doi: 10.1021/ci900209w. PubMed DOI
Rupp M, Körner R, Tetko IV. Predicting the pKKa of small molecules. Comb Chem High Throughput Screen. 2010;14(5):307–327. doi: 10.2174/138620711795508403. PubMed DOI
Fraczkiewicz R. In Silico Prediction of Ionization, Volume 5. Oxford: Elsevier; 2006.
Ho J, Coote M. A universal approach for continuum solvent pKa calculations: Are we there yet? Theor Chim Acta. 2010;125(1–2):3–21. doi: 10.1007/s00214-009-0667-0. DOI
Clark J, Perrin DD. Prediction of the strengths of organic bases. Q ReV Chem Soc. 1964;18:295–320. doi: 10.1039/qr9641800295. DOI
Perrin DD, Dempsey B, Serjeant EP. pKa Prediction for Organic Acids and Bases. New York: Chapman and Hall; 1981.
Blower PE, Cross KP. Decision tree methods in pharmaceutical research. Curr Top Med Chem. 2006;6:31–39. doi: 10.2174/156802606775193301. PubMed DOI
Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields G. Absolute pKa determinations for substituted phenols. J Am Chem Soc. 2002;124:6421–6427. doi: 10.1021/ja012474j. PubMed DOI
Toth AM, Liptak MD, Phillips DL, Shields GC. Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods. J Chem Phys. 2001;114:4595–4606. doi: 10.1063/1.1337862. PubMed DOI
Hagan MT, Demuth HB, Beale M. In Neural, Network Design. Boston: PWS, MA; 1996.
Jelfs S, Ertl P, Selzer P. Estimation of pKa for druglike compounds using semiempirical and information-based descriptors. J Chem Inf Model. 2007;47:450–459. doi: 10.1021/ci600285n. PubMed DOI
Dixon SL, Jurs PC. Estimation of pKa for organic oxyacids using calculated atomic charges. J Comput Chem. 1993;14:1460–1467. doi: 10.1002/jcc.540141208. DOI
Zhang J, Kleinöder T, Gasteiger J. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model. 2006;46:2256–2266. doi: 10.1021/ci060129d. PubMed DOI
Citra MJ. Estimating the pKa of phenols, carboxylic acids and alcohols from semi-empirical quantum chemical methods. Chemosphere. 1999;1:191–206. doi: 10.1016/S0045-6535(98)00172-6. PubMed DOI
Gross KC, Seybold PG, Hadad CM. Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols. Int J Quantum Chem. 2002;90:445–458. doi: 10.1002/qua.10108. DOI
Kreye WC, Seybold PG. Correlations between quantum chemical indices and the pKas of a diverse set of organic phenols. Int J Quantum Chem. 2009;109:3679–3684. doi: 10.1002/qua.22343. DOI
Svobodová Vařeková R, Geidl S, Ionescu CM, Skřehota O, Kudera M, Sehnal D, Bouchal T, Abagyan R, Huber HJ, Koča J. Predicting pKa values of substituted phenols from atomic charges: Comparison of different quantum mechanical methods and charge distribution schemes. J Chem Inf Model. 2011;51(8):1795–1806. doi: 10.1021/ci200133w. PubMed DOI
Mulliken RS. Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments. J Chem Phys. 1935;3(9):573–585. doi: 10.1063/1.1749731. DOI
Mulliken RS. Criteria for construction of good self-consistent-field molecular orbital wave functions, and significance of LCAO-MO population analysis. J Chem Phys. 1962;36(12):3428–3439. doi: 10.1063/1.1732476. DOI
Lowdin PO. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys. 1950;18(3):365–375. doi: 10.1063/1.1747632. DOI
Reed AE, Weinstock RB, Weinhold F. Natural-population analysis. J Chem Phys. 1985;83(2):735–746. doi: 10.1063/1.449486. DOI
Bader RFW, Larouche A, Gatti C, Carroll MT, Macdougall PJ, Wiberg KB. Properties of atoms in molecules - dipole-moments and transferability of properties. J Chem Phys. 1987;87(2):1142–1152. doi: 10.1063/1.453294. DOI
Hirshfeld FL. Bonded-atom fragments for describing molecular charge-densities. Theor Chim Acta. 1977;44(2):129–138. doi: 10.1007/BF00549096. DOI
Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials - the need for high sampling density in formamide conformational-analysis. J Comput Chem. 1990;11(3):361–373. doi: 10.1002/jcc.540110311. DOI
Besler BH, Merz KM, Kollman PA. Atomic charges derived from semiempirical methods. J Comput Chem. 1990;11(4):431–439. doi: 10.1002/jcc.540110404. DOI
Kelly CP, Cramer CJ, Truhlar DG. Accurate partial atomic charges for high-energy molecules using class IV charge models with the MIDI! basis set. Theor Chem Acc. 2005;113(3):133–151. doi: 10.1007/s00214-004-0624-x. DOI
Abraham RJ, Griffiths L, Loftus P. Approaches to charge calculations in molecular mechanics. J Comput Chem. 1982;3(3):407–416. doi: 10.1002/jcc.540030316. DOI
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI
Cho KH, Kang YK, No KT, Scheraga HA. A fast method for calculating geometry-dependent net atomic charges for polypeptides. J Phys Chem B. 2001;105(17):3624–3634. doi: 10.1021/jp0023213. DOI
Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS. Atomic charges via electronegativity equalization: Generalizations and perspectives. Adv Quantum Chem. 2006;51:139–156. doi: 10.1016/S0065-3276(06)51004-4. DOI
Shulga DA, Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS. Parameterization of empirical schemes of partial atomic charge calculation for reproducing the molecular electrostatic potential. Dokl Chem. 2008;419:57–61. doi: 10.1134/S001250080803004X. DOI
Mortier WJ, Ghosh SK, Shankar S. Electronegativity equalization method for the calculation of atomic charges in molecules. J Am Chem Soc. 1986;108:4315–4320. doi: 10.1021/ja00275a013. DOI
Rappe AK, Goddard WA. Charge equilibration for molecular-dynamics simulations. J Phys Chem. 1991;95(8):3358–3363. doi: 10.1021/j100161a070. DOI
Nistor RA, Polihronov JG, Muser MH, Mosey NJ. A generalization of the charge equilibration method for nonmetallic materials. J Chem Phys. 2006;125(9):094108–094118. doi: 10.1063/1.2346671. PubMed DOI
Czodrowski P, Dramburg I, Sotriffer CA, Klebe G. Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein–ligand complexes. Proteins Struct Funct Bioinf. 2006;65:424–437. doi: 10.1002/prot.21110. PubMed DOI
Gieleciak R, Polanski J. Modeling robust QSAR. 2. Iterative variable elimination schemes for CoMSA: Application for modeling benzoic acid pKa values. J Chem Inf Model. 2007;47:547–556. doi: 10.1021/ci600295z. PubMed DOI
Svobodová Vařeková R, Jiroušková Z, Vaněk J, Suchomel S, Koča J. Electronegativity equalization method: Parameterization and validation for large sets of organic, organohalogene and organometal molecule. Int J Mol Sci. 2007;8:572–582. doi: 10.3390/i8070572. DOI
Baekelandt BG, Mortier WJ, Lievens JL, Schoonheydt RA. Probing the reactivity of different sites within a molecule or solid by direct computation of molecular sensitivities via an extension of the electronegativity equalization method. J Am Chem Soc. 1991;113(18):6730–6734. doi: 10.1021/ja00018a003. DOI
Jiroušková Z, Svobodová Vařeková R, Vaněk J, Koča J. Electronegativity equalization method: Parameterization and validation for organic molecules using the Merz–Kollman–Singh charge distribution scheme. J Comput Chem. 2009;30:1174–1178. doi: 10.1002/jcc.21142. PubMed DOI
Chaves J, Barroso JM, Bultinck P, Carbo-Dorca R. Toward an alternative hardness kernel matrix structure in the Electronegativity Equalization Method (EEM) J Chem Inf Model. 2006;46(4):1657–1665. doi: 10.1021/ci050505e. PubMed DOI
Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere J. The electronegativity equalization method I: Parametrization and validation for atomic charge calculations. J Phys Chem A. 2002;106(34):7887–7894. doi: 10.1021/jp0205463. DOI
Ouyang Y, Ye F, Liang Y. A modified electronegativity equalization method for fast and accurate calculation of atomic charges in large biological molecules. Phys Chem. 2009;11:6082–6089. PubMed
Bultinck P, Vanholme R, Popelier PLA, De Proft F, Geerlings P. High-speed calculation of AIM charges through the electronegativity equalization method. J Phys Chem A. 2004;108(46):10359–10366. doi: 10.1021/jp046928l. DOI
Yang ZZ, Wang CS. Atom-bond electronegativity equalization method. 1. Calculation of the charge distribution in large molecules. J Phys Chem A. 1997;101:6315–6321. doi: 10.1021/jp9711048. DOI
Menegon G, Loos M, Chaimovich H. Parameterization of the electronegativity equalization method based on the charge model 1. J Phys Chem A. 2002;106:9078–9084. doi: 10.1021/jp026083i. DOI
Svobodová Vařeková R, Koča J. Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization method. J Comput Chem. 2006;3:396–405. doi: 10.1002/jcc.20344. PubMed DOI
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H. Gaussian 09, Revision E.01. Wallingford: Gaussian, Inc.; 2004.
Keith TA. AIMAll, Version 11.12.19. USA: TK Gristmill Software, Overland Park KS; 2011.
Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M. Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR. J Mol Model. 2006;12:338–347. doi: 10.1007/s00894-005-0050-6. PubMed DOI
Hanai T, Koizumi K, Kinoshita T, Arora R, Ahmed F. Prediction of pKa values of phenolic and nitrogen-containing compounds by computational chemical analysis compared to those measured by liquid chromatography. J Chromatogr A. 1997;762:55–61. doi: 10.1016/S0021-9673(96)01009-6. PubMed DOI
Tehan BG, Lloyd EJ, Wong MG, Pitt WR, Montana JG, Manallack DT, Gancia E. Estimation of pKa Using semiempirical molecular orbital methods. Part 1: Application to phenols and carboxylic acids. Quant Struct-Act Relat. 2002;21:457–472. doi: 10.1002/1521-3838(200211)21:5<457::AID-QSAR457>3.0.CO;2-5. DOI
NCI Open Database Compounds. Retrieved from [http://cactus.nci.nih.gov/] on August 10, 2010
Sadowski J, Gasteiger J. From atoms and bonds to three-dimensional atomic coordinates: Automatic model builders. Chem ReV. 1993;93:2567–2581. doi: 10.1021/cr00023a012. DOI
Howard P, Meylan W. Physical/Chemical Property Database (PHYSPROP) North Syracuse NY: Syracuse Research Corporation, Environmental Science Center; 1999.
Skřehota O, Svobodová Vařeková R, Geidl S, Kudera M, Sehnal D, Ionescu CM, Koča J. QSPR designer – a program to design and evaluate QSPR models. Case study on pKa prediction. J Cheminf. 2011;3(Suppl 1):P16. doi: 10.1186/1758-2946-3-S1-P16. DOI
Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Van Alsenoy C, Tollenaere JP. The electronegativity equalization method II: Applicability of different atomic charge schemes. J Phys Chem A. 2002;106(34):7895–7901. doi: 10.1021/jp020547v. DOI
Lemm S, Blankertz B, Dickhaus T, Müller KR. Introduction to machine learning for brain imaging. NeuroImage. 2011;56(2):387–399. doi: 10.1016/j.neuroimage.2010.11.004. PubMed DOI
Organisation for Economic Co-operation and Development . Guidance Document on the Validation of (Quantitative)Structure-Activity Relationships [(Q)SAR] Models. Paris: OECD; 2007.
NEEMP: software for validation, accurate calculation and fast parameterization of EEM charges
High-quality and universal empirical atomic charges for chemoinformatics applications
How Does the Methodology of 3D Structure Preparation Influence the Quality of pKa Prediction?