How Does the Methodology of 3D Structure Preparation Influence the Quality of pKa Prediction?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM071872
NIGMS NIH HHS - United States
U01 GM094612
NIGMS NIH HHS - United States
U54 GM094618
NIGMS NIH HHS - United States
PubMed
26010215
PubMed Central
PMC5098400
DOI
10.1021/ci500758w
Knihovny.cz E-zdroje
- MeSH
- chemické jevy * MeSH
- kvantitativní vztahy mezi strukturou a aktivitou * MeSH
- kvantová teorie MeSH
- molekulární konformace * MeSH
- molekulární modely * MeSH
- počítačová simulace MeSH
- racionální návrh léčiv MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The acid dissociation constant is an important molecular property, and it can be successfully predicted by Quantitative Structure-Property Relationship (QSPR) models, even for in silico designed molecules. We analyzed how the methodology of in silico 3D structure preparation influences the quality of QSPR models. Specifically, we evaluated and compared QSPR models based on six different 3D structure sources (DTP NCI, Pubchem, Balloon, Frog2, OpenBabel, and RDKit) combined with four different types of optimization. These analyses were performed for three classes of molecules (phenols, carboxylic acids, anilines), and the QSPR model descriptors were quantum mechanical (QM) and empirical partial atomic charges. Specifically, we developed 516 QSPR models and afterward systematically analyzed the influence of the 3D structure source and other factors on their quality. Our results confirmed that QSPR models based on partial atomic charges are able to predict pKa with high accuracy. We also confirmed that ab initio and semiempirical QM charges provide very accurate QSPR models and using empirical charges based on electronegativity equalization is also acceptable, as well as advantageous, because their calculation is very fast. On the other hand, Gasteiger-Marsili empirical charges are not applicable for pKa prediction. We later found that QSPR models for some classes of molecules (carboxylic acids) are less accurate. In this context, we compared the influence of different 3D structure sources. We found that an appropriate selection of 3D structure source and optimization method is essential for the successful QSPR modeling of pKa. Specifically, the 3D structures from the DTP NCI and Pubchem databases performed the best, as they provided very accurate QSPR models for all the tested molecular classes and charge calculation approaches, and they do not require optimization. Also, Frog2 performed very well. Other 3D structure sources can also be used but are not so robust, and an unfortunate combination of molecular class and charge calculation approach can produce weak QSPR models. Additionally, these 3D structures generally need optimization in order to produce good quality QSPR models.
Zobrazit více v PubMed
Comer J, Tam K. Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical, and Computational Strategies. Verlag Helvetica Chimica Acta, Post-fach; CH-8042 Zürich, Switzerland: 2001.
Klebe G. Recent Developments in Structure-Based Drug Design. J Mol Med. 2000;78:269–281. PubMed
Kim JH, Gramatica P, Kim MG, Kim D, Tratnyek PG. QSAR Modelling of Water Quality Indices of Alkylphenol Pollutants. SAR QSAR Environ Res. 2007;18:729–743. PubMed
Lee AC, Crippen GM. Predicting pKa. J Chem Inf Model. 2009;49:2013–2033. PubMed
Rupp M, Körner R, Tetko IV. Predicting the pKa of Small Molecules. Comb Chem High Throughput Screen. 2010;14:307–327. PubMed
Ho J. Predicting pKa in Implicit Solvents: Current Status and Future Directions. Aust J Chem. 2014;67:1441–1460.
Balogh GT, Tarcsay Á, Keserű GM. Comparative Evaluation of pKa Prediction Tools on a Drug Discovery Dataset. J Pharm Biomed Anal. 2012;6768:63–70. PubMed
Svobodová Vařeková R, Geidl S, Ionescu CM, Skřehota O, Bouchal T, Sehnal D, Abagyan R, Koča J. Predicting pKa Values From EEM Atomic Charges. J Cheminf. 2013;5:18–34. PubMed PMC
Fraczkiewicz R, Lobell M, Gller AH, Krenz U, Schoenneis R, Clark RD, Hillisch A. Best of Both Worlds: Combining Pharma Data and State of the Art Modeling Technology to Improve in silico pKa Prediction. J Chem Inf Model. 2015;55:389–397. PubMed
Settimo L, Bellman K, Knegtel RMA. Comparison of the Accuracy of Experimental and Predicted pKa Values of Basic and Acidic Compounds. Pharmaceut Res. 2014;31:1082–1095. PubMed
Jelfs S, Ertl P, Selzer P. Estimation of pKa for Druglike Compounds Using Semiempirical and Information-Based Descriptors. J Chem Inf Model. 2007;47:450–459. PubMed
Dixon SL, Jurs PC. Estimation of pKa for Organic Oxyacids Using Calculated Atomic Charges. J Comput Chem. 1993;14:1460–1467.
Zhang J, Kleinöder T, Gasteiger J. Prediction of pKa Values for Aliphatic Carboxylic Acids and Alcohols With Empirical Atomic Charge Descriptors. J Chem Inf Model. 2006;46:2256–2266. PubMed
Citra MJ. Estimating the pKa of Phenols, Carboxylic Acids and Alcohols From Semi-empirical Quantum Chemical Methods. Chemosphere. 1999;1:191–206. PubMed
Gross KC, Seybold PG, Hadad CM. Comparison of Different Atomic Charge Schemes for Predicting pKa Variations in Substituted Anilines and Phenols. Int J Quantum Chem. 2002;90:445–458.
Kreye WC, Seybold PG. Correlations Between Quantum Chemical Indices and the pKas of a Diverse Set of Organic Phenols. Int J Quantum Chem. 2009;109:3679–3684.
Svobodová Vařeková R, Geidl S, Ionescu CM, Skřehota O, Kudera M, Sehnal D, Bouchal T, Abagyan R, Huber HJ, Koča J. Predicting pKa Values of Substituted Phenols From Atomic Charges: Comparison of Different Quantum Mechanical Methods and Charge Distribution Schemes. J Chem Inf Model. 2011;51:1795–1806. PubMed
Rayne S, Forest K, Friesen K. Examining the PM6 Semiempirical Method for pKa Prediction Across a Wide Range of Oxyacids. Available from Nature Precedings. http://hdl.handle.net/10101/npre.2009.2981.1.
Gieleciak R, Polanski J. Modeling Robust QSAR. 2. Iterative Variable Elimination Schemes for CoMSA: Application for Modeling Benzoic Acid pKa Values. J Chem Inf Model. 2007;47:547–556. PubMed
Mortier WJ, Ghosh SK, Shankar S. Electronegativity Equalization Method for the Calculation of Atomic Charges in Molecules. J Am Chem Soc. 1986;108:4315–4320.
Czodrowski P, Dramburg I, Sotriffer CA, Klebe G. Development, Validation, and Application of Adapted PEOE Charges to Estimate pKa Values of Functional Groups in Protein–Ligand Complexes. Proteins Struct Funct Bioinf. 2006;65:424–437. PubMed
Tehan BG, Lloyd EJ, Wong MG, Pitt WR, Montana JG, Manallack DT, Gancia E. Estimation of pKa Using Semiempirical Molecular Orbital Methods. Part 1: Application to Phenols and Carboxylic Acids. Quant Struct-Act Relat. 2002;21:457–472.
NCI Open Database Compounds. Retrieved from http://cactus.nci.nih.gov/ on August 10, 2010.
Sadowski J, Gasteiger J. From Atoms and Bonds to Three-Dimensional Atomic Coordinates: Automatic Model Builders. Chem ReV. 1993;93:2567–2581.
Bolton EE, Wang Y, Thiessen PA, Bryant SH. In: In Annual Reports in Computational Chemistry. Wheeler R, Spellmeyer D, editors. 4; Chapter 12 Elsevier; 2008.
Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model. 2010;50:572–584. PubMed PMC
Vainio MJ, Johnson MS. Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm. J Chem Inf Model. 2007;47:2462–2474. PubMed
Leite TB, Gomes D, Miteva M, Chomilier J, Villoutreix B, Tuffry P. Frog: a FRee Online DruG 3D Conformation Generator. Nucleic Acids Res. 2007;35:W568–W572. PubMed PMC
O'Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G. Open Babel: An Open Chemical Toolbox. J Cheminf. 2011;3:33–47. PubMed PMC
Landrum G. RDKit: Open-Source Cheminformatics. Retrieved from http://www.rdkit.org on January 10, 2014.
Gross KC, Seybold PG. Substituent Effects on the Physical Properties and pKa of Phenol. Int J Quantum Chem. 2001;85:569–579.
Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M. Application of Artificial Neural Networks for Predicting the Aqueous Acidity of Various Phenols Using QSAR. J Mol Model. 2006;12:338–347. PubMed
Howard P, Meylan W. Physical/Chemical Property Database (PHYSPROP) Syracuse Research Corporation, Environmental Science Center; North Syracuse NY: 1999.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 09, Revision E.01. Gaussian, Inc.; Wallingford, CT: 2004.
Gront D, Kolinski A. BioShell – a Package of Tools for Structural Biology Computations. Bioinformatics. 2006;22:621–622. PubMed
Gront D, Kolinski A. Utility Library for Structural. Bioinformatics. 2008;24:584–585. PubMed
Svobodová Vařeková R, Koča J. Optimized and Parallelized Implementation of the Electronegativity Equalization Method and the Atom-Bond Electronegativity Equalization Method. J Comput Chem. 2006;3:396–405. PubMed
Svobodová Vařeková R, Jiroušková Z, Vaněk J, Suchomel S, Koča J. Electronegativity Equalization Method: Parameterization and Validation for Large Sets of Organic, Organohalogene and Organometal Molecule. Int J Mol Sci. 2007;8:572–582.
Chaves J, Barroso JM, Bultinck P, Carbo-Dorca R. Toward an Alternative Hardness Kernel Matrix Structure in the Electronegativity Equalization Method (EEM) J Chem Inf Model. 2006;46:1657–1665. PubMed
Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Van Alsenoy C, Tollenaere JP. The Electronegativity Equalization Method II: Applicability of Different Atomic Charge Schemes. J Phys Chem A. 2002;106:7895–7901.
Bultinck P, Vanholme R, Popelier PLA, De Proft F, Geerlings P. High-speed Calculation of AIM Charges Through the Electronegativity Equalization Method. J Phys Chem A. 2004;108:10359–10366.
Skřehota O, Svobodová Vařeková R, Geidl S, Kudera M, Sehnal D, Ionescu CM, Koča J. QSPR Designer – a Program to Design and Evaluate QSPR models. Case Study on pKa Prediction. J Cheminf. 2011;3(Suppl 1):16.
Lemm S, Blankertz B, Dickhaus T, Müller KR. Introduction to Machine Learning for Brain Imaging. NeuroImage. 2011;56:387–399. PubMed
Katritzky AR, Lobanov VS, Karelson M. QSPR: The Correlation and Quantitative Prediction of Chemical and Physical Properties From Structure. Chem Soc Rev. 1995;24:279–287.
Optimized SQE atomic charges for peptides accessible via a web application
NEEMP: software for validation, accurate calculation and fast parameterization of EEM charges
High-quality and universal empirical atomic charges for chemoinformatics applications