Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture

. 2021 Jan 11 ; 11 (1) : 328. [epub] 20210111

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33431983
Odkazy

PubMed 33431983
PubMed Central PMC7801494
DOI 10.1038/s41598-020-79668-2
PII: 10.1038/s41598-020-79668-2
Knihovny.cz E-zdroje

Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.

Zobrazit více v PubMed

Cifra M, Pospišil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J.Photochem. Photobiol. B Biol. 2014;139:2–10. doi: 10.1016/j.jphotobiol.2014.02.009. PubMed DOI

Pospíšil P, Prasad A, Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B Biol. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI

Van Wijk, R., Van Wijk, E. P., van Wietmarschen, H. A. & Greef, J. v. d. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: A review. J. Photochem. Photobiol. B Biol.139, 39–46 (2014). PubMed

Cifra M, Van Wijk E, Koch H, Bosman S, Van Wijk R. Spontaneous ultra-weak photon emission from human hands is time dependent. Radioengineering. 2007;16:15.

Ou-Yang H. The application of ultra-weak photon emission in dermatology. J. Photochem. Photobiol. B Biol. 2014;139:63–70. doi: 10.1016/j.jphotobiol.2013.10.003. PubMed DOI

Tang R, Dai J. Biophoton signal transmission and processing in the brain. J. Photochem. Photobiol. B Biol. 2014;139:71–75. doi: 10.1016/j.jphotobiol.2013.12.008. PubMed DOI

Takeda M, et al. Biophoton detection as a novel technique for cancer imaging. Cancer Sci. 2004;95:656–661. doi: 10.1111/j.1349-7006.2004.tb03325.x. PubMed DOI PMC

Kato K, et al. Application of ultra-weak photon emission measurements in agriculture. J. Photochem. Photobiol. B Biol. 2014;139:54–62. doi: 10.1016/j.jphotobiol.2014.06.010. PubMed DOI

Saeidfirozeh H, Shafiekhani A, Cifra M, Masoudi AA. Endogenous chemiluminescence from germinating arabidopsis thaliana seeds. Sci. Rep. 2018;8:16231. doi: 10.1038/s41598-018-34485-6. PubMed DOI PMC

Rafieiolhosseini N, et al. Photocount statistics of ultra-weak photon emission from germinating mung bean. J. Photochem. Photobiol. B Biol. 2016;162:50–55. doi: 10.1016/j.jphotobiol.2016.06.001. PubMed DOI

Zala SM, Penn DJ. Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Anim. Behav. 2004;68:649–664. doi: 10.1016/j.anbehav.2004.01.005. DOI

Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course—A systematic literature review. Environ. Res. 2016;147:383–398. doi: 10.1016/j.envres.2016.01.018. PubMed DOI

Hoek G, et al. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health. 2013;12:43. doi: 10.1186/1476-069X-12-43. PubMed DOI PMC

Tétreault L-F, Perron S, Smargiassi A. Cardiovascular health, traffic-related air pollution and noise: are associations mutually confounded? A systematic review. Int. J. Public Health. 2013;58:649–666. doi: 10.1007/s00038-013-0489-7. PubMed DOI PMC

Shah ASV, et al. Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ. 2015;350:h1295. doi: 10.1136/bmj.h1295. PubMed DOI PMC

Mills NL, et al. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovas. Med. 2009;6:36–44. doi: 10.1038/ncpcardio1399. PubMed DOI

Kelly FJ. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003;60:612–616. doi: 10.1136/oem.60.8.612. PubMed DOI PMC

Puntarulo S. Iron, oxidative stress and human health. Mol. Asp. Med. 2005;26:299–312. doi: 10.1016/j.mam.2005.07.001. PubMed DOI

Perrone GG, Tan S-X, Dawes IW. Reactive oxygen species and yeast apoptosis. Biochimica et Biophysica Acta (BBA) Mol. Cell Res. 2008;1783:1354–1368. doi: 10.1016/j.bbamcr.2008.01.023. PubMed DOI

Moradas-Ferreira P, Costa V, Piper P, Mager W. The molecular defences against reactive oxygen species in yeast. Mol. Microbiol. 1996;19:651–658. doi: 10.1046/j.1365-2958.1996.403940.x. PubMed DOI

Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell. Longev. 2011;2011:1–9. doi: 10.1155/2011/809696. PubMed DOI PMC

Thomas C, Mackey MM, Diaz AA, Cox DP. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep. 2009;14:102–108. doi: 10.1179/135100009X392566. PubMed DOI

Datz C, Felder TK, Niederseer D, Aigner E. Iron homeostasis in the metabolic syndrome. Eur. J. Clin. Investig. 2013;43:215–224. doi: 10.1111/eci.12032. PubMed DOI

Schneijder P, Kok F, Hermus R. Iron, oxidative stress, and disease risk. Cancer Causes Control. 1992;3:457–473. doi: 10.1007/BF00051359. PubMed DOI

Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorgan. Biochem. 2002;91:9–18. doi: 10.1016/S0162-0134(02)00461-0. PubMed DOI

Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J. Neurochem. 2011;118:939–957. doi: 10.1111/j.1471-4159.2010.07132.x. PubMed DOI

Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014;2:557–572. doi: 10.1016/j.jece.2013.10.011. DOI

Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 1979;109:273–284. doi: 10.1093/oxfordjournals.aje.a112681. PubMed DOI

Turner MC, et al. Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study. Cancer Epidemiol. Biomark. Prev. 2014;23:1863–1872. doi: 10.1158/1055-9965.EPI-14-0102. PubMed DOI PMC

Savitz DA, Liao D, Sastre A, Kleckner RC, Kavet R. Magnetic field exposure and cardiovascular disease mortality among electric utility workers. Am. J. Epidemiol. 1999;149:135–142. doi: 10.1093/oxfordjournals.aje.a009779. PubMed DOI

Wang S, et al. Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Sci. Rep. 2016;6:30783. doi: 10.1038/srep30783. PubMed DOI PMC

Rick O, von Hehn U, Mikus E, Dertinger H, Geiger G. Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III study. Bioelectromagnetics. 2017;38:85–94. doi: 10.1002/bem.22005. PubMed DOI PMC

Lee HC, et al. Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics. 2015;36:506–516. doi: 10.1002/bem.21932. PubMed DOI

Zhang M, et al. Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics. 2013;34:74–80. doi: 10.1002/bem.21747. PubMed DOI

Pasi F, et al. Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts. Electromagn. Biol. Med. 2016;35:343–352. doi: 10.3109/15368378.2016.1138123. PubMed DOI

An G-Z, et al. Effects of long-term 50 Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells. PLoS ONE. 2015;10:e0117672. doi: 10.1371/journal.pone.0117672. PubMed DOI PMC

Novák J, Strašák L, Fojt L, Slaninová I, Vetterl V. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry. 2007;70:115–121. doi: 10.1016/j.bioelechem.2006.03.029. PubMed DOI

Liboff AR. Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 1985;13:99–102. doi: 10.1007/BF01878387. DOI

Lednev V. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 1991;12:71–75. doi: 10.1002/bem.2250120202. PubMed DOI

Steiner UE, Ulrich T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 1989;89:51–147. doi: 10.1021/cr00091a003. DOI

Woodward JR. Radical pairs in solution. Prog. React. Kinet. Mech. 2002;27:165–207. doi: 10.3184/007967402103165388. DOI

Barnes FS, Greenebaum B. The effects of weak magnetic fields on radical pairs. Bioelectromagnetics. 2015;36:45–54. doi: 10.1002/bem.21883. PubMed DOI

Buchachenko A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Magnetic and electromagnetic effects in biology. Bioelectromagnetics. 2016;37:1–13. doi: 10.1002/bem.21947. PubMed DOI

Schuh MD, Speiser S, Atkinson GH. Time-resolved phosphorescence spectra of acetaldehyde and perdeuterioacetaldehyde vapor. J. Phys. Chem. 1984;88:2224–2228. doi: 10.1021/j150655a010. DOI

Cilento G. Generation of electronically excited triplet species in biochemical systems. Pure Appl. Chem. 1984;56:1179–1190. doi: 10.1351/pac198456091179. DOI

Escobar JA, Cilento G, Nascimento ALTO. Effects induced in neutrophils by a precursor of triplet acetone. Photochem. Photobiol. 1990;51:713–717. doi: 10.1111/php.1990.51.6.713. PubMed DOI

Farahani P, Roca-Sanjuán D, Zapata F, Lindh R. Revisiting the nonadiabatic process in 1,2-dioxetane. J. Chem. Theory Comput. 2013;9:5404–5411. doi: 10.1021/ct4007844. PubMed DOI

Adam W, Kazakov DV, Kazakov VP. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 2005;105:3371–3387. doi: 10.1021/cr0300035. PubMed DOI

Di Mascio P, et al. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI

Shen X, Tian J, Zhu Z, Li X. Chemiluminescence study on the peroxidation of linoleic acid initiated by the reaction of ferrous iron with hydrogen peroxide. Biophys. Chem. 1991;40:161–167. doi: 10.1016/0301-4622(91)87005-P. PubMed DOI

Ivanova IP, et al. Mechanism of chemiluminescence in Fenton reaction. J. Biophys. Chem. 2012;03:88–100. doi: 10.4236/jbpc.2012.31011. DOI

Vahalová, P., Červinková, K. & Cifra, M. Biological autoluminescence for assessing oxidative processes in yeast cell cultures. bioRxiv 2020.11.19.388801 (2020). Cold Spring Harbor Laboratory Section: New Results. PubMed PMC

Laager F, Becker N, Park S-H, Soh K-S. Effects of Lac Operon activation, deletion of the Yhha gene, and the removal of oxygen on the ultra-weak photon emission of Escherichia coli. Electromagn. Biol. Med. 2009;28:240–249. doi: 10.3109/15368370903065820. PubMed DOI

Mehedintu M, Berg H. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem. Bioenerg. 1997;43:67–70. doi: 10.1016/S0302-4598(96)05184-7. DOI

Santos LO, Alegre RM, Garcia-Diego C, Cuellar J. Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 2010;45:1362–1367. doi: 10.1016/j.procbio.2010.05.008. DOI

Barabáš, J., Radil, R. & Malíková, I. Modification of S. cerevisiae growth dynamics using low frequency electromagnetic fields in the 1–2 kHz range. BioMed. Res. Int.2015, 1–5 (2015). PubMed PMC

Quickenden TI, Hee SSQ. Weak luminescence from the yeast Saccharomyces cerevisiae and the existence of mitogenetic radiation. Biochem. Biophys. Res. Commun. 1974;60:764–770. doi: 10.1016/0006-291X(74)90306-4. PubMed DOI

Quickenden TI, Hee SSQ. The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochem. Photobiol. 1976;23:201–204. doi: 10.1111/j.1751-1097.1976.tb07242.x. PubMed DOI

Quickenden T, Tilbury R. Growth dependent luminescence from cultures of normal and respiratory deficient Saccharomyces cerevisiae. Photochem. Photobiol. 1983;37:337–344. doi: 10.1111/j.1751-1097.1983.tb04482.x. PubMed DOI

Quickenden TI, Tilbury RN. Luminescence spectra of exponential and stationary phase cultures of respiratory deficient Saccharomyces cerevisiae. J. Photochem. Photobiol. B Biol. 1991;8:169–174. doi: 10.1016/1011-1344(91)80055-M. PubMed DOI

Tilbury R, Quickenden T. Luminescence from the yeast Candida utilis and comparisons across three genera. Luminescence. 1992;7:245–253. PubMed

Chen G, Lu D, Chiang H, Leszczynski D, Xu Z. Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression. Bioelectromagnetics. 2012;33:550–560. doi: 10.1002/bem.21724. PubMed DOI

Ruiz-Gómez, M., Prieto-Barcia, M., Ristori-Bogajo, E. & Martınez-Morillo, M. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry64, 151–155 (2004). PubMed

Červinková, K., Nerudová, M., Hašek, J. & Cifra, M. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells. In Tománek, P., Senderáková, D. & Páta, P. (eds.) Photonics, Devices, and Systems VI, vol. 9450, 169–175 (SPIE, 2015), International Society for Optics and Photonics.

Prasad, A. & Pospíšil, P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep.3, (2013). PubMed PMC

Radil, R. & Barabáš, J. Investigation of low frequency electromagnetic field influence on cell proliferation process. In 2012 ELEKTRO, 456–459 (IEEE, 2012).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biological autoluminescence for assessing oxidative processes in yeast cell cultures

. 2021 May 25 ; 11 (1) : 10852. [epub] 20210525

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace