Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33431983
PubMed Central
PMC7801494
DOI
10.1038/s41598-020-79668-2
PII: 10.1038/s41598-020-79668-2
Knihovny.cz E-zdroje
- MeSH
- celulosa analogy a deriváty farmakologie MeSH
- fixní kombinace léků MeSH
- kultivační techniky MeSH
- luminiscence * MeSH
- oxidace-redukce účinky léků MeSH
- povidon farmakologie MeSH
- Saccharomyces cerevisiae cytologie účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- celulosa MeSH
- fixní kombinace léků MeSH
- hyetellose, povidone drug combination MeSH Prohlížeč
- povidon MeSH
Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.
Faculty of Electrical Engineering and Information Technology University of Zilina Zilina Slovakia
Faculty of Health Catholic University in Ruzomberok Ruzomberok Slovakia
Institute of Measurement Science of the Slovak Academy of Sciences Bratislava Slovakia
Institute of Photonics and Electronics of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Cifra M, Pospišil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J.Photochem. Photobiol. B Biol. 2014;139:2–10. doi: 10.1016/j.jphotobiol.2014.02.009. PubMed DOI
Pospíšil P, Prasad A, Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B Biol. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI
Van Wijk, R., Van Wijk, E. P., van Wietmarschen, H. A. & Greef, J. v. d. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: A review. J. Photochem. Photobiol. B Biol.139, 39–46 (2014). PubMed
Cifra M, Van Wijk E, Koch H, Bosman S, Van Wijk R. Spontaneous ultra-weak photon emission from human hands is time dependent. Radioengineering. 2007;16:15.
Ou-Yang H. The application of ultra-weak photon emission in dermatology. J. Photochem. Photobiol. B Biol. 2014;139:63–70. doi: 10.1016/j.jphotobiol.2013.10.003. PubMed DOI
Tang R, Dai J. Biophoton signal transmission and processing in the brain. J. Photochem. Photobiol. B Biol. 2014;139:71–75. doi: 10.1016/j.jphotobiol.2013.12.008. PubMed DOI
Takeda M, et al. Biophoton detection as a novel technique for cancer imaging. Cancer Sci. 2004;95:656–661. doi: 10.1111/j.1349-7006.2004.tb03325.x. PubMed DOI PMC
Kato K, et al. Application of ultra-weak photon emission measurements in agriculture. J. Photochem. Photobiol. B Biol. 2014;139:54–62. doi: 10.1016/j.jphotobiol.2014.06.010. PubMed DOI
Saeidfirozeh H, Shafiekhani A, Cifra M, Masoudi AA. Endogenous chemiluminescence from germinating arabidopsis thaliana seeds. Sci. Rep. 2018;8:16231. doi: 10.1038/s41598-018-34485-6. PubMed DOI PMC
Rafieiolhosseini N, et al. Photocount statistics of ultra-weak photon emission from germinating mung bean. J. Photochem. Photobiol. B Biol. 2016;162:50–55. doi: 10.1016/j.jphotobiol.2016.06.001. PubMed DOI
Zala SM, Penn DJ. Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Anim. Behav. 2004;68:649–664. doi: 10.1016/j.anbehav.2004.01.005. DOI
Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course—A systematic literature review. Environ. Res. 2016;147:383–398. doi: 10.1016/j.envres.2016.01.018. PubMed DOI
Hoek G, et al. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health. 2013;12:43. doi: 10.1186/1476-069X-12-43. PubMed DOI PMC
Tétreault L-F, Perron S, Smargiassi A. Cardiovascular health, traffic-related air pollution and noise: are associations mutually confounded? A systematic review. Int. J. Public Health. 2013;58:649–666. doi: 10.1007/s00038-013-0489-7. PubMed DOI PMC
Shah ASV, et al. Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ. 2015;350:h1295. doi: 10.1136/bmj.h1295. PubMed DOI PMC
Mills NL, et al. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovas. Med. 2009;6:36–44. doi: 10.1038/ncpcardio1399. PubMed DOI
Kelly FJ. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003;60:612–616. doi: 10.1136/oem.60.8.612. PubMed DOI PMC
Puntarulo S. Iron, oxidative stress and human health. Mol. Asp. Med. 2005;26:299–312. doi: 10.1016/j.mam.2005.07.001. PubMed DOI
Perrone GG, Tan S-X, Dawes IW. Reactive oxygen species and yeast apoptosis. Biochimica et Biophysica Acta (BBA) Mol. Cell Res. 2008;1783:1354–1368. doi: 10.1016/j.bbamcr.2008.01.023. PubMed DOI
Moradas-Ferreira P, Costa V, Piper P, Mager W. The molecular defences against reactive oxygen species in yeast. Mol. Microbiol. 1996;19:651–658. doi: 10.1046/j.1365-2958.1996.403940.x. PubMed DOI
Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell. Longev. 2011;2011:1–9. doi: 10.1155/2011/809696. PubMed DOI PMC
Thomas C, Mackey MM, Diaz AA, Cox DP. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep. 2009;14:102–108. doi: 10.1179/135100009X392566. PubMed DOI
Datz C, Felder TK, Niederseer D, Aigner E. Iron homeostasis in the metabolic syndrome. Eur. J. Clin. Investig. 2013;43:215–224. doi: 10.1111/eci.12032. PubMed DOI
Schneijder P, Kok F, Hermus R. Iron, oxidative stress, and disease risk. Cancer Causes Control. 1992;3:457–473. doi: 10.1007/BF00051359. PubMed DOI
Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorgan. Biochem. 2002;91:9–18. doi: 10.1016/S0162-0134(02)00461-0. PubMed DOI
Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J. Neurochem. 2011;118:939–957. doi: 10.1111/j.1471-4159.2010.07132.x. PubMed DOI
Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014;2:557–572. doi: 10.1016/j.jece.2013.10.011. DOI
Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 1979;109:273–284. doi: 10.1093/oxfordjournals.aje.a112681. PubMed DOI
Turner MC, et al. Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study. Cancer Epidemiol. Biomark. Prev. 2014;23:1863–1872. doi: 10.1158/1055-9965.EPI-14-0102. PubMed DOI PMC
Savitz DA, Liao D, Sastre A, Kleckner RC, Kavet R. Magnetic field exposure and cardiovascular disease mortality among electric utility workers. Am. J. Epidemiol. 1999;149:135–142. doi: 10.1093/oxfordjournals.aje.a009779. PubMed DOI
Wang S, et al. Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Sci. Rep. 2016;6:30783. doi: 10.1038/srep30783. PubMed DOI PMC
Rick O, von Hehn U, Mikus E, Dertinger H, Geiger G. Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III study. Bioelectromagnetics. 2017;38:85–94. doi: 10.1002/bem.22005. PubMed DOI PMC
Lee HC, et al. Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics. 2015;36:506–516. doi: 10.1002/bem.21932. PubMed DOI
Zhang M, et al. Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics. 2013;34:74–80. doi: 10.1002/bem.21747. PubMed DOI
Pasi F, et al. Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts. Electromagn. Biol. Med. 2016;35:343–352. doi: 10.3109/15368378.2016.1138123. PubMed DOI
An G-Z, et al. Effects of long-term 50 Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells. PLoS ONE. 2015;10:e0117672. doi: 10.1371/journal.pone.0117672. PubMed DOI PMC
Novák J, Strašák L, Fojt L, Slaninová I, Vetterl V. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry. 2007;70:115–121. doi: 10.1016/j.bioelechem.2006.03.029. PubMed DOI
Liboff AR. Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 1985;13:99–102. doi: 10.1007/BF01878387. DOI
Lednev V. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 1991;12:71–75. doi: 10.1002/bem.2250120202. PubMed DOI
Steiner UE, Ulrich T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 1989;89:51–147. doi: 10.1021/cr00091a003. DOI
Woodward JR. Radical pairs in solution. Prog. React. Kinet. Mech. 2002;27:165–207. doi: 10.3184/007967402103165388. DOI
Barnes FS, Greenebaum B. The effects of weak magnetic fields on radical pairs. Bioelectromagnetics. 2015;36:45–54. doi: 10.1002/bem.21883. PubMed DOI
Buchachenko A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Magnetic and electromagnetic effects in biology. Bioelectromagnetics. 2016;37:1–13. doi: 10.1002/bem.21947. PubMed DOI
Schuh MD, Speiser S, Atkinson GH. Time-resolved phosphorescence spectra of acetaldehyde and perdeuterioacetaldehyde vapor. J. Phys. Chem. 1984;88:2224–2228. doi: 10.1021/j150655a010. DOI
Cilento G. Generation of electronically excited triplet species in biochemical systems. Pure Appl. Chem. 1984;56:1179–1190. doi: 10.1351/pac198456091179. DOI
Escobar JA, Cilento G, Nascimento ALTO. Effects induced in neutrophils by a precursor of triplet acetone. Photochem. Photobiol. 1990;51:713–717. doi: 10.1111/php.1990.51.6.713. PubMed DOI
Farahani P, Roca-Sanjuán D, Zapata F, Lindh R. Revisiting the nonadiabatic process in 1,2-dioxetane. J. Chem. Theory Comput. 2013;9:5404–5411. doi: 10.1021/ct4007844. PubMed DOI
Adam W, Kazakov DV, Kazakov VP. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 2005;105:3371–3387. doi: 10.1021/cr0300035. PubMed DOI
Di Mascio P, et al. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI
Shen X, Tian J, Zhu Z, Li X. Chemiluminescence study on the peroxidation of linoleic acid initiated by the reaction of ferrous iron with hydrogen peroxide. Biophys. Chem. 1991;40:161–167. doi: 10.1016/0301-4622(91)87005-P. PubMed DOI
Ivanova IP, et al. Mechanism of chemiluminescence in Fenton reaction. J. Biophys. Chem. 2012;03:88–100. doi: 10.4236/jbpc.2012.31011. DOI
Vahalová, P., Červinková, K. & Cifra, M. Biological autoluminescence for assessing oxidative processes in yeast cell cultures. bioRxiv 2020.11.19.388801 (2020). Cold Spring Harbor Laboratory Section: New Results. PubMed PMC
Laager F, Becker N, Park S-H, Soh K-S. Effects of Lac Operon activation, deletion of the Yhha gene, and the removal of oxygen on the ultra-weak photon emission of Escherichia coli. Electromagn. Biol. Med. 2009;28:240–249. doi: 10.3109/15368370903065820. PubMed DOI
Mehedintu M, Berg H. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem. Bioenerg. 1997;43:67–70. doi: 10.1016/S0302-4598(96)05184-7. DOI
Santos LO, Alegre RM, Garcia-Diego C, Cuellar J. Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 2010;45:1362–1367. doi: 10.1016/j.procbio.2010.05.008. DOI
Barabáš, J., Radil, R. & Malíková, I. Modification of S. cerevisiae growth dynamics using low frequency electromagnetic fields in the 1–2 kHz range. BioMed. Res. Int.2015, 1–5 (2015). PubMed PMC
Quickenden TI, Hee SSQ. Weak luminescence from the yeast Saccharomyces cerevisiae and the existence of mitogenetic radiation. Biochem. Biophys. Res. Commun. 1974;60:764–770. doi: 10.1016/0006-291X(74)90306-4. PubMed DOI
Quickenden TI, Hee SSQ. The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochem. Photobiol. 1976;23:201–204. doi: 10.1111/j.1751-1097.1976.tb07242.x. PubMed DOI
Quickenden T, Tilbury R. Growth dependent luminescence from cultures of normal and respiratory deficient Saccharomyces cerevisiae. Photochem. Photobiol. 1983;37:337–344. doi: 10.1111/j.1751-1097.1983.tb04482.x. PubMed DOI
Quickenden TI, Tilbury RN. Luminescence spectra of exponential and stationary phase cultures of respiratory deficient Saccharomyces cerevisiae. J. Photochem. Photobiol. B Biol. 1991;8:169–174. doi: 10.1016/1011-1344(91)80055-M. PubMed DOI
Tilbury R, Quickenden T. Luminescence from the yeast Candida utilis and comparisons across three genera. Luminescence. 1992;7:245–253. PubMed
Chen G, Lu D, Chiang H, Leszczynski D, Xu Z. Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression. Bioelectromagnetics. 2012;33:550–560. doi: 10.1002/bem.21724. PubMed DOI
Ruiz-Gómez, M., Prieto-Barcia, M., Ristori-Bogajo, E. & Martınez-Morillo, M. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry64, 151–155 (2004). PubMed
Červinková, K., Nerudová, M., Hašek, J. & Cifra, M. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells. In Tománek, P., Senderáková, D. & Páta, P. (eds.) Photonics, Devices, and Systems VI, vol. 9450, 169–175 (SPIE, 2015), International Society for Optics and Photonics.
Prasad, A. & Pospíšil, P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep.3, (2013). PubMed PMC
Radil, R. & Barabáš, J. Investigation of low frequency electromagnetic field influence on cell proliferation process. In 2012 ELEKTRO, 456–459 (IEEE, 2012).