Biological autoluminescence for assessing oxidative processes in yeast cell cultures
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34035342
PubMed Central
PMC8149683
DOI
10.1038/s41598-021-89753-9
PII: 10.1038/s41598-021-89753-9
Knihovny.cz E-zdroje
- MeSH
- koncentrace vodíkových iontů MeSH
- luminiscenční měření MeSH
- oxidace-redukce MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Saccharomyces cerevisiae růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
Nowadays, modern medicine is looking for new, more gentle, and more efficient diagnostic methods. A pathological state of an organism is often closely connected with increased amount of reactive oxygen species. They can react with biomolecules and subsequent reactions can lead to very low endogenous light emission (biological autoluminescence-BAL). This phenomenon can be potentially used as a non-invasive and low-operational-cost tool for monitoring oxidative stress during diseases. To contribute to the understanding of the parameters affecting BAL, we analyzed the BAL from yeast Saccharomyces cerevisiae as a representative eukaryotic organism. The relationship between the BAL intensity and the amount of reactive oxygen species that originates as a result of the Fenton reaction as well as correlation between spontaneous BAL and selected physical and chemical parameters (pH, oxygen partial pressure, and cell concentration) during cell growth were established. Our results contribute to real-time non-invasive methodologies for monitoring oxidative processes in biomedicine and biotechnology.
Zobrazit více v PubMed
Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer. 2014;14:709–721. doi: 10.1038/nrc3803. PubMed DOI PMC
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292. PubMed DOI
Siegrist J, Sies H. Disturbed redox homeostasis in oxidative distress: A molecular link from chronic psychosocial work stress to coronary heart disease? Circ. Res. 2017;121:103–105. doi: 10.1161/CIRCRESAHA.117.311182. PubMed DOI
Shah AM. Free radicals and redox signalling in cardiovascular disease. Heart. 2004;90:486–487. doi: 10.1136/hrt.2003.029389. PubMed DOI PMC
Toledano MB, Delaunay A, Biteau B, Spector D, Azevedo D. Oxidative stress responses in yeast. In: Hohmann S, Hohmann S, Mager WH, editors. Yeast Stress Responses. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2003. pp. 241–303.
Rinnerthaler M, et al. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc. Natl. Acad. Sci. 2012;109:8658–8663. doi: 10.1073/pnas.1201629109. PubMed DOI PMC
Hawkins, C. L. & Davies, M. J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem.294, 19683–19708 (2019). PubMed PMC
Percival M. Antioxidants. Clin. Nutr. Ins. 1996;1:1–6.
Pospíšil, P., Prasad, A. & Rác, M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: Role of reactive oxygen species. Biomolecules9, 258 (2019). https://www.mdpi.com/2218-273X/9/7/258. PubMed PMC
Vacher M, et al. Chemi- and bioluminescence of cyclic peroxides. Chem. Rev. 2018;118:6927–6974. doi: 10.1021/acs.chemrev.7b00649. PubMed DOI
Miyamoto, S., Martinez, G. R., Medeiros, M. H. & Di Mascio, P. Singlet molecular oxygen generated by biological hydroperoxides. J. Photochem. Photobiol. B: Biol.139, 24–33 (2014). PubMed
Cifra, M. & Pospišil, P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B: Biol.139, 2–10 (2014). PubMed
Pospíšil, P., Prasad, A. & Rác, M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B: Biol.139, 11–23 (2014). PubMed
Tilbury R, Quickenden T. Luminescence from the yeast Candida utilis and comparisons across three genera. Luminescence. 1992;7:245–253. PubMed
Hagens, R. et al. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission measurement. II: biological validation on ultraviolet A-stressed skin. Skin Res. Technol.0, 071018045710002. 10.1111/j.1600-0846.2007.00207.x (2007). PubMed
Kato, K. et al. Application of ultra-weak photon emission measurements in agriculture. J. Photochem. Photobiol. B: Biol.139, 54–62 (2014). PubMed
Ou-Yang, H. The application of ultra-weak photon emission in dermatology. J. Photochem. Photobiol. B: Biol.139, 63–70 (2014). PubMed
Louwerse, M. Computational modeling of oxidation catalysis: studies concerning Fenton’s reaction. Ph.D. thesis, s.n.], S.l. (2008). OCLC: 229344243.
Lambrechts, M. G. & Pretorius, I. S. Yeast and its Importance to Wine Aroma: A review. S. Afr. J. Enol. Viticult.21, 97–129 (2000). https://www.journals.ac.za/index.php/sajev/article/view/3560. Number: 1.
Pires EJ, Teixeira JA, Brányik T, Vicente AA. Yeast: the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014;98:1937–1949. doi: 10.1007/s00253-013-5470-0. PubMed DOI
Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 2014;9:609–620. doi: 10.1002/biot.201300445. PubMed DOI
Quickenden TI, Hee SSQ. Weak luminescence from the yeast Saccharomyces cerevisiae and the existence of mitogenetic radiation. Biochem. Biophys. Res. Commun. 1974;60:764–770. doi: 10.1016/0006-291X(74)90306-4. PubMed DOI
Quickenden TI, Hee SSQ. The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochem. Photobiol. 1976;23:201–204. doi: 10.1111/j.1751-1097.1976.tb07242.x. PubMed DOI
Quickenden T, Tilbury R. Growth dependent luminescence from cultures of normal and respiratory deficient Saccharomyces cerevisiae. Photochem. Photobiol. 1983;37:337–344. doi: 10.1111/j.1751-1097.1983.tb04482.x. PubMed DOI
Quickenden, T. I. & Tilbury, R. N. Luminescence spectra of exponential and stationary phase cultures of respiratory deficient Saccharomyces cerevisiae. J. Photochem. Photobiol. B: Biol.8, 169–174 (1991). PubMed
Stadtman E, Berlett B. Fenton chemistry. Amino acid oxidation. J. Biol. Chem. 1991;266:17201–17211. doi: 10.1016/S0021-9258(19)47359-6. PubMed DOI
Baron CP, Refsgaard HHF, Skibsted LH, Andersen ML. Oxidation of bovine serum albumin initiated by the Fenton reaction—effect of EDTA, tert -butylhydroperoxide and tetrahydrofuran. Free Radical Res. 2006;40:409–417. doi: 10.1080/10715760600565752. PubMed DOI
Ivanova IP, et al. Mechanism of chemiluminescence in Fenton reaction. J. Biophys. Checm. 2012;03:88–100. doi: 10.4236/jbpc.2012.31011. DOI
Bereta M, Teplan M, Chafai DE, Radil R, Cifra M. Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Sci. Rep. 2021;11:328. doi: 10.1038/s41598-020-79668-2. PubMed DOI PMC
Jacques KA, Lyons TP, Kelsall DR. The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries. 4. Nottingham: Nottingham University Press; 2003.
Cadenas, E., Boveris, A. & Chance, B. Low-level chemiluminescence of bovine heart submitochondrial particles. Biochem. J.186, 659–667 (1980). http://www.biochemj.org/content/186/3/659.abstract. PubMed PMC
Narayanaswami, V. & Sies, H. Oxidative damage to mitochondria and protection by ebselen and other antioxidants. Biochem. Pharmacol.40, 1623–1629 (1990). PubMed
Kamal AHM, Komatsu S. Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. J. Proteome Res. 2015;14:2219–2236. doi: 10.1021/acs.jproteome.5b00007. PubMed DOI
Sardarabadi, H. et al. Enhancement of the biological autoluminescence by mito-liposomal gold nanoparticle nanocarriers. J. Photochem. Photobiol. B: Biol.204, 111812 (2020). PubMed
Maslanka, R., Zadrag-Tecza, R. & Kwolek-Mirek, M. Linkage between carbon metabolism, redox status and cellular physiology in the yeast Saccharomyces cerevisiae Devoid of SOD1 or SOD2 Gene. Genes11, 780 (2020). PubMed PMC
Kirsch M, Groot H. NAD(P)H, a directly operating antioxidant? FASEB J. 2001;15:1569–1574. doi: 10.1096/fj.00-0823hyp. PubMed DOI
Jamieson, D. J. Oxidative stress responses of the yeastSaccharomyces cerevisiae. Yeast14, 1511–1527 (1998). https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0061(199812)14:16 PubMed
Coote N, Kirsop BH. Factors responsible for the decrease in pH during beer fermentations. J. Inst. Brew. 1976;82:149–153. doi: 10.1002/j.2050-0416.1976.tb03739.x. DOI
Nerudová, M., Červinková, K., Hašek, J. & Cifra, M. Optical spectral analysis of ultra-weak photon emission from tissue culture and yeast cells. In SPIE Proceedings (eds Tománek, P. et al.) 94500O (2015). 10.1117/12.2069897.
Zakhartsev, M. & Reuss, M. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature. FEMS Yeast Res.18. 10.1093/femsyr/foy052/4987208 (2018). PubMed
Feldmann H, editor. Yeast: molecular and cell biology. 2. New York: Wiley-Blackwell; 2012.
Červinková, K., Nerudová, M., Hašek, J. & Cifra, M. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells. In Photonics, Devices, and Systems VI, pp 169–175 Vol. 9450 (SPIE, 2015) (eds Tománek, P. et al.) (Backup Publisher: International Society for Optics and Photonics). 10.1117/12.2070424.