Endogenous Chemiluminescence from Germinating Arabidopsis Thaliana Seeds
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30385859
PubMed Central
PMC6212569
DOI
10.1038/s41598-018-34485-6
PII: 10.1038/s41598-018-34485-6
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- biologické markery MeSH
- klíčení * genetika MeSH
- luminiscence * MeSH
- oxidace-redukce účinky léků MeSH
- oxidační stres MeSH
- peroxid vodíku metabolismus farmakologie MeSH
- semena rostlinná genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- peroxid vodíku MeSH
It is well known that all biological systems which undergo oxidative metabolism or oxidative stress generate a small amount of light. Since the origin of excited states producing this light is generally accepted to come from chemical reactions, the term endogenous biological chemiluminescence is appropriate. Apart from biomedicine, this phenomenon has potential applications also in plant biology and agriculture like monitoring the germination rate of seeds. While chemiluminescence capability to monitor germination has been measured on multiple agriculturally relevant plants, the standard model plant Arabidopsis thaliana has not been analyzed for this process so far. To fill in this gap, we demonstrate here on A. thaliana that the intensity of endogenous chemiluminescence increases during the germination stage. We showed that the chemiluminescence intensity increases since the second day of germination, but reaches a plateau on the third day, in contrast to other plants germinating from larger seeds studied so far. We also showed that intensity increases after topical application of hydrogen peroxide in a dose-dependent manner. Further, we demonstrated that the entropy of the chemiluminescence time series is similar to random Poisson signals. Our results support a notion that metabolism and oxidative reactions are underlying processes which generate endogenous biological chemiluminescence. Our findings contribute to novel methods for non-invasive and label-free sensing of oxidative processes in plant biology and agriculture.
Department of Physics Alzahra University Tehran 1993891167 Iran
Institute for Research in Fundamental Sciences School of Physics P O Box 19395 5531 Tehran Iran
Institute of Photonics and Electronics of the Czech Academy of Sciences Prague 18200 Czechia
Zobrazit více v PubMed
Cifra M, Pospíšil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. Journal of Photochemistry and Photobiology B: Biology. 2014;139:2–10. doi: 10.1016/j.jphotobiol.2014.02.009. PubMed DOI
Pospíšil P, Prasad A, Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. Journal of Photochemistry and Photobiology B: Biology. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI
Havaux M, Triantaphylides C, Genty B. Autoluminescence imaging: a non-invasive tool for mapping oxidative stress. Trends in plant science. 2006;11:480–484. doi: 10.1016/j.tplants.2006.08.001. PubMed DOI
Abeles F. Plant chemiluminescence. Annual review of plant physiology. 1986;37:49–72. doi: 10.1146/annurev.pp.37.060186.000405. DOI
Kato K, et al. Application of ultra-weak photon emission measurements in agriculture. Journal of Photochemistry and Photobiology B: Biology. 2014;139:54–62. doi: 10.1016/j.jphotobiol.2014.06.010. PubMed DOI
Reinholz, E. et al. X-ray mutations in a. thaliana (l.) heynh. and their significance for plant breeding and the theory of evolution. X-ray mutations in A. Thaliana (L.) Heynh. and their significance for plant breeding and the theory of evolution (1947).
Rensink W, Buell CR. Arabidopsis to rice. applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiology. 2004;135:622–629. doi: 10.1104/pp.104.040170. PubMed DOI PMC
Coelho SM, et al. Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene. 2007;406:152–170. doi: 10.1016/j.gene.2007.07.025. PubMed DOI
Meyerowitz EM, Pruitt RE. Arabidopsis thaliana and plant molecular genetics. Science. 1985;229:1214–1218. doi: 10.1126/science.229.4719.1214. PubMed DOI
Estelle M, Somerville CR. The mutants of arabidopsis. Trends in Genetics. 1986;2:89–93. doi: 10.1016/0168-9525(86)90190-3. DOI
Platt A, et al. The scale of population structure in arabidopsis thaliana. PLoS genetics. 2010;6:e1000843. doi: 10.1371/journal.pgen.1000843. PubMed DOI PMC
Bennett M, Mehta M, Grant M. Biophoton imaging: a nondestructive method for assaying r gene responses. Molecular plant-microbe interactions. 2005;18:95–102. doi: 10.1094/MPMI-18-0095. PubMed DOI
Rastogi A, Pospíšil P. Ultra-weak photon emission as a non-invasive tool for the measurement of oxidative stress induced by uva radiation in arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology. 2013;123:59–64. doi: 10.1016/j.jphotobiol.2013.03.012. PubMed DOI
Rastogi A, et al. Singlet oxygen scavenging activity of tocopherol and plastochromanol in arabidopsis thaliana: relevance to photooxidative stress. Plant, cell & environment. 2014;37:392–401. doi: 10.1111/pce.12161. PubMed DOI
Slawinski J, Grabikowski E, Ciesla L. Spectral distribution of the ultraweak luminescence from germinating plants. Journal of Luminescence. 1981;24:791–794. doi: 10.1016/0022-2313(81)90093-4. DOI
Gallep CM, Dos Santos SR. Photon-counts during germination of wheat (Triticum aestivum) in wastewater sediment solutions correlated with seedling growth. Seed Science and Technology. 2007;35:607–614. doi: 10.15258/sst.2007.35.3.08. DOI
Chen W, Xing D, Wang J, He Y. Rapid determination of rice seed vigour by spontaneous chemiluminescence and singlet oxygen generation during early imbibition. Luminescence. 2003;18:19–24. doi: 10.1002/bio.695. PubMed DOI
Rafieiolhosseini N, et al. Photocount statistics of ultra-weak photon emission from germinating mung bean. Journal of Photochemistry and Photobiology B: Biology. 2016;162:50–55. doi: 10.1016/j.jphotobiol.2016.06.001. PubMed DOI
Poplová M, Sovka P, Cifra M. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance. Plos One. 2017;12:e0188622. doi: 10.1371/journal.pone.0188622. PubMed DOI PMC
Kobayashi M, Inaba H. Photon statistics and correlation analysis of ultraweak light originating from living organisms for extraction of biological information. Applied Optics. 2000;39:183. doi: 10.1364/AO.39.000183. PubMed DOI
Van Wijk R, Van Wijk EP, Bajpai RP. Photocount distribution of photons emitted from three sites of a human body. Journal of Photochemistry and Photobiology B: Biology. 2006;84:46–55. doi: 10.1016/j.jphotobiol.2006.01.010. PubMed DOI
Van Wijk EP, Wijk RV, Bajpai RP, van der Greef J. Statistical analysis of the spontaneously emitted photon signals from palm and dorsal sides of both hands in human subjects. Journal of Photochemistry and Photobiology B: Biology. 2010;99:133–143. doi: 10.1016/j.jphotobiol.2010.03.008. PubMed DOI
Popp FA, et al. Biophoton emission: New evidence for coherence and DNA as source. Cell Biochemistry and Biophysics. 1984;6:33–52. doi: 10.1007/BF02788579. PubMed DOI
Budagovsky AV. On the ability of cells to distinguish the coherence of optical radiation. Quantum Electronics. 2005;35:369–374. doi: 10.1070/QE2005v035n04ABEH002837. DOI
Kučera O, Cifra M. Cell-to-cell signaling through light: just a ghost of chance? Cell Communication and Signaling. 2013;11:1. PubMed PMC
Prasad A, et al. New perspective in cell communication: Potential role of ultra-weak photon emission. Journal of Photochemistry and Photobiology B: Biology. 2014;139:47–53. doi: 10.1016/j.jphotobiol.2014.03.004. PubMed DOI
Scholkmann F, Fels D, Cifra M. Non-chemical and non-contact cell-to-cell communication: a short review. American journal of translational research. 2013;5:586. PubMed PMC
Walls, D. F. & Milburn, G. J. Quantum optics (Springer, 2008).
Bajpai R. Biophoton emission in a squeezed state from a sample of Parmelia tinctorum. Physics Letters A. 2004;322:131–136. doi: 10.1016/j.physleta.2003.12.050. DOI
Bajpai R. Squeezed state description of spectral decompositions of a biophoton signal. Physics Letters A. 2005;337:265–273. doi: 10.1016/j.physleta.2005.01.079. DOI
Cifra M, Brouder C, Nerudov´a M, Kuˇcera O. Biophotons, coherence and photocount statistics: A critical review. Journal of Luminescence. 2015;164:38–51. doi: 10.1016/j.jlumin.2015.03.020. DOI
Iranifam M, Segundo MA, Santos JLM, Lima JLFC, Sorouraddin MH. Oscillating chemiluminescence systems: state of the art. Luminescence. 2010;25:409–418. doi: 10.1002/bio.1203. PubMed DOI
Scholkmann F, Cifra M, Moraes TA. & de Mello Gallep, C. Using multifractal analysis of ultra-weak photon emission from germinating wheat seedlings to differentiate between two grades of intoxication with potassium dichromate. Journal of Physics: Conference Series. 2011;329:012020. doi: 10.1088/1742-6596/329/1/012020. DOI
Popp F. Emission of visible and ultraviolet radiation by active biological system. Collective Phenomena. 1981;3:187–214.
Grassberger P, Procaccia I. Estimation of the kolmogorov entropy from a chaotic signal. Physical review A. 1983;28:2591. doi: 10.1103/PhysRevA.28.2591. DOI
Eckmann, J.-P. & Ruelle, D. Ergodic theory of chaos and strange attractors. In The Theory of Chaotic Attractors, 273–312 (Springer, 1985).
Yentes JM, et al. The appropriate use of approximate entropy and sample entropy with short data sets. Annals of biomedical engineering. 2013;41:349–365. doi: 10.1007/s10439-012-0668-3. PubMed DOI PMC
Ho KK, et al. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation. 1997;96:842–848. doi: 10.1161/01.CIR.96.3.842. PubMed DOI
Mäkikallio TH, et al. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. American Journal of Cardiology. 1998;81:27–31. doi: 10.1016/S0002-9149(97)00799-6. PubMed DOI
Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic for medical data analysis. Journal of clinical monitoring. 1991;7:335–345. doi: 10.1007/BF01619355. PubMed DOI
Ma Y, Shi W, Peng C-K, Yang AC. Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep medicine reviews. 2018;37:85–93. doi: 10.1016/j.smrv.2017.01.003. PubMed DOI
Bhattacharyya A, Pachori RB, Upadhyay A, Acharya UR. Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic eeg signals. Applied Sciences. 2017;7:385. doi: 10.3390/app7040385. DOI
Li Y, Xu M, Wei Y, Huang W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement. 2016;77:80–94. doi: 10.1016/j.measurement.2015.08.034. DOI
Ocak H. Automatic detection of epileptic seizures in eeg using discrete wavelet transform and approximate entropy. Expert Systems with Applications. 2009;36:2027–2036. doi: 10.1016/j.eswa.2007.12.065. DOI
Acharya UR, et al. Automated diagnosis of epileptic eeg using entropies. Biomedical Signal Processing and Control. 2012;7:401–408. doi: 10.1016/j.bspc.2011.07.007. DOI
Morrison S, Hong S, Newell K. Inverse relations in the patterns of muscle and center of pressure dynamics during standing still and movement postures. Experimental brain research. 2007;181:347–358. doi: 10.1007/s00221-007-0928-x. PubMed DOI
Yeragani VK, Appaya S, Seema K, Kumar R, Tancer M. Qrs amplitude of ecg in normal humans: effects of orthostatic challenge on linear and nonlinear measures of beat-to-beat variability. Cardiovascular Engineering. 2005;5:135–140. doi: 10.1007/s10558-005-7674-0. DOI
Moraes TA, Barlow PW, Klingel´e E, Gallep CM. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide. Naturwissenschaften. 2012;99:465–472. doi: 10.1007/s00114-012-0921-5. PubMed DOI
Herridge RP, Day RC, Baldwin S, Macknight RC. Rapid analysis of seed size in arabidopsis for mutant and qtl discovery. Plant Methods. 2011;7:3. doi: 10.1186/1746-4811-7-3. PubMed DOI PMC
Moles AT, et al. A brief history of seed size. Science. 2005;307:576–580. doi: 10.1126/science.1104863. PubMed DOI
Gallep, C. M., Moraes, T. A., Juliao, G. O. & Santos, S. R. Rhythmicities in the spontaneous photon emission of wheat seedlings. In Microwave and Optoelectronics Conference, 2007. IMOC 2007. SBMO/IEEE MTT-S International, 713–715 (IEEE, 2007).
de Mello Gallep C. Ultraweak, spontaneous photon emission in seedlings: toxicological and chronobiological applications: UPE in seedlings - applications. Luminescence. 2014;29:963–968. doi: 10.1002/bio.2658. PubMed DOI
Gallep CM, et al. Lunisolar tidal synchronism with biophoton emission during intercontinental wheat-seedling germination tests. Plant signaling & behavior. 2014;9:e28671. doi: 10.4161/psb.28671. PubMed DOI PMC
Babbs, C. F. & Steiner, M. G. Simulation of free radical reactions in biology and medicine: a new two-compartment kinetic model of intracellular lipid peroxidation. Free radical biology & medicine (1990). PubMed
Rastogi A, Pospíšil P. Production of hydrogen peroxide and hydroxyl radical in potato tuber during the necrotrophic phase of hemibiotrophic pathogen phytophthora infestans infection. Journal of Photochemistry and Photobiology B: Biology. 2012;117:202–206. doi: 10.1016/j.jphotobiol.2012.10.001. PubMed DOI
Baud S, Boutin J-P, Miquel M, Lepiniec L, Rochat C. An integrated overview of seed development in arabidopsis thaliana ecotype ws. Plant Physiology and Biochemistry. 2002;40:151–160. doi: 10.1016/S0981-9428(01)01350-X. DOI
Job C, Rajjou L, Lovigny Y, Belghazi M, Job D. Patterns of protein oxidation in arabidopsis seeds and during germination. Plant Physiology. 2005;138:790–802. doi: 10.1104/pp.105.062778. PubMed DOI PMC
Marsh, G. LOESS regression smoothing,v2.1 (2016).
Pincus SM. Assessing serial irregularity and its implications for health. Annals of the New York Academy of Sciences. 2001;954:245–267. doi: 10.1111/j.1749-6632.2001.tb02755.x. PubMed DOI
Chon Ki H., Scully Christopher G., Lu Sheng. Approximate entropy for all signals. IEEE Engineering in Medicine and Biology Magazine. 2009;28(6):18–23. doi: 10.1109/MEMB.2009.934629. PubMed DOI
Parnandi, A. Approximate entropy,v1.0 (2010).
MathWorks, I. MATLAB: the language of technical computing. Desktop tools and development environment, version R2015b, vol. 9 (MathWorks, 2015).
Statistics and machine learning toolbox 2015 (2015).