Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29216207
PubMed Central
PMC5720749
DOI
10.1371/journal.pone.0188622
PII: PONE-D-17-24444
Knihovny.cz E-zdroje
- MeSH
- fotony * MeSH
- lidé MeSH
- neutrofily metabolismus MeSH
- počítačová simulace MeSH
- Poissonovo rozdělení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.
Zobrazit více v PubMed
Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 2012;41(8):3210–3244. doi: 10.1039/C1CS15245A PubMed DOI
Piliarik M, Párová L, Homola J. High-throughput SPR sensor for food safety. Biosensors and Bioelectronics. 2009;24(5):1399–1404. doi: 10.1016/j.bios.2008.08.012 PubMed DOI
Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nature Biotechnology. 2014;32(5):490 doi: 10.1038/nbt.2886 PubMed DOI PMC
Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano. 2009;3(9):2834–2840. doi: 10.1021/nn900813b PubMed DOI PMC
O’Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nature Photonics. 2009;3(12):687–695. doi: 10.1038/nphoton.2009.229 DOI
Malchus N, Weiss M. Elucidating anomalous protein diffusion in living cells with fluorescence correlation spectroscopy: facts and pitfalls. Journal of Fluorescence. 2010;20(1):19–26. doi: 10.1007/s10895-009-0517-4 PubMed DOI
Sperling J, Vogel W, Agarwal G. True photocounting statistics of multiple on-off detectors. Physical Review A. 2012;85(2):023820 doi: 10.1103/PhysRevA.85.023820 DOI
Rigler R, Elson ES. Fluorescence correlation spectroscopy: theory and applications. vol. 65 Springer Science & Business Media; 2012.
Ramanujan VK, Herman BA. Nonlinear scaling analysis of glucose metabolism in normal and cancer cells. Journal of Biomedical Optics. 2008;13(3). doi: 10.1117/1.2928154 PubMed DOI
Garcia D. Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis. 2010;54(4):1167–1178. doi: 10.1016/j.csda.2009.09.020 PubMed DOI PMC
Walls DF, Milburn GJ. Quantum optics. Springer; 2008.
Teich MC, Saleh BE. Squeezed state of light. Quantum Optics: Journal of the European Optical Society Part B. 1989;1(2):153 doi: 10.1088/0954-8998/1/2/006 DOI
Halvorson RA, Vikesland PJ. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environmental Science & Technology. 2010;44(20):7749–7755. doi: 10.1021/es101228z PubMed DOI
Kobayashi M, Inaba H. Photon statistics and correlation analysis of ultraweak light originating from living organisms for extraction of biological information. Applied Optics. 2000;39:183–92. doi: 10.1364/AO.39.000183 PubMed DOI
Kobayashi M, Deveraj B, Inaba H. Observation of super-Poisson statistics of bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation. Physical Review E. 1998;57:2129–33. doi: 10.1103/PhysRevE.57.2129 DOI
Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chemical Reviews. 2008;108(7):2506–2553. doi: 10.1021/cr068083a PubMed DOI
Cifra M, Pospíšil P. Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. Journal of Photochemistry and Photobiology B: Biology. 2014;139:2–10. doi: 10.1016/j.jphotobiol.2014.02.009 PubMed DOI
Bartlett MS. The Square Root Transformation in Analysis of Variance. Supplement to the Journal of the Royal Statistical Society. 1936;3(1):68 doi: 10.2307/2983678 DOI
Anscombe FJ. The Transformation of Poisson, Binomial and Negative-Binomial Data. Biometrika. 1948;35(3/4):246 doi: 10.1093/biomet/35.3-4.246 DOI
Yu G. Variance stabilizing transformations of Poisson, binomial and negative binomial distributions. Statistics & Probability Letters. 2009;79(14):1621–1629. doi: 10.1016/j.spl.2009.04.010 DOI
Azzari L, Foi A. Variance Stabilization for Noisy+Estimate Combination in Iterative Poisson Denoising. IEEE Signal Processing Letters. 2016;23(8):1086–1090. doi: 10.1109/LSP.2016.2580600 DOI
King MR, Mody NA. Numerical and statistical methods for bioengineering: applications in MATLAB. Cambridge University Press; 2010.
Larose DT, Larose CD. Data mining and predictive analytics. John Wiley & Sons; 2015.
Manolakis DG, Ingle VK, Kogon SM. Statistical and adaptive signal processing: spectral estimation, signal modeling, adaptive filtering, and array processing. vol. 46 Artech House Norwood; 2005.
Samuni A, Krishna CM, Cook J, Black CD, Russo A. On radical production by PMA-stimulated neutrophils as monitored by luminol-amplified chemiluminescence. Free Radical Biology and Medicine. 1991;10(5):305–313. doi: 10.1016/0891-5849(91)90037-4 PubMed DOI
Rafieiolhosseini N, Poplová M, Sasanpour P, Rafii-Tabar H, Alhossaini MR, Cifra M. Photocount statistics of ultra-weak photon emission from germinating mung bean. Journal of Photochemistry and Photobiology B: Biology. 2016;162:50–55. doi: 10.1016/j.jphotobiol.2016.06.001 PubMed DOI
Bland E, Keshavarz T, Bucke C. Using 2, 7-dichlorodihydrofluorescein-diacetate to assess polysaccharides as immunomodulating agents. Molecular biotechnology. 2001;19(2):125–131. PubMed
Freitas M, Porto G, Lima JL, Fernandes E. Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clinical biochemistry. 2008;41(7):570–575. doi: 10.1016/j.clinbiochem.2007.12.021 PubMed DOI
Costa D, Marques AP, Reis RL, Lima JL, Fernandes E. Inhibition of human neutrophil oxidative burst by pyrazolone derivatives. Free Radical Biology and Medicine. 2006;40(4):632–640. doi: 10.1016/j.freeradbiomed.2005.09.017 PubMed DOI
Poniedzialek B, Rzymski P, Nawrocka-Bogusz H, Jaroszyk F, Wiktorowicz K. The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro. Electromagnetic biology and medicine. 2013;32(3):333–341. doi: 10.3109/15368378.2012.721845 PubMed DOI
Nawrocka-Bogusz H, Jaroszyk F. May the variable magnetic field and pulse red light induce synergy effects in respiratory burst of neutrophils in vitro? In: Journal of Physics: Conference Series. vol. 329. IOP Publishing; 2011. p. 012023.
Fano U. Ionization yield of radiations. II. The fluctuations of the number of ions. Physical Review. 1947;72(1):26 doi: 10.1103/PhysRev.72.26 DOI
Hurst HE. Long-term storage capacity of reservoirs. Trans Amer Soc Civil Eng. 1951;116:770–808.
Feder J. Fractals. Springer Science & Business Media; 2013.
Mandelbrot BB, Wallis JR. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research. 1969;5(5):967–988. doi: 10.1029/WR005i005p00967 DOI
Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Physical Review E. 1994;49(2):1685 doi: 10.1103/PhysRevE.49.1685 PubMed DOI
Bunde A, Havlin S, Kantelhardt JW, Penzel T, Peter JH, Voigt K. Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Physical Review Letters. 2000;85(17):3736 doi: 10.1103/PhysRevLett.85.3736 PubMed DOI
Bryce R, Sprague K. Revisiting detrended fluctuation analysis. Scientific reports. 2012;2 doi: 10.1038/srep00315 PubMed DOI PMC
Shao YH, Gu GF, Jiang ZQ, Zhou WX, Sornette D. Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series. Scientific reports. 2012;2 doi: 10.1038/srep00835 PubMed DOI PMC
Bendat J. S., Piersol G. A. Measurement and Analysis of Binomial and Random Data. John Wiley & Sons, New York: 1966.
Press WH. Numerical Recipes Third Edition: The Art of Scientific Computing. Cambridge University Press; 2007.
Guderian A, Münster A, Jinguji M, Kraus M, Schneider F. Resonant chaos control by light in a chemiluminescent reaction. Chemical Physics Letters. 1999;312(5):440–446. doi: 10.1016/S0009-2614(99)00931-8 DOI
Iranifam M, Segundo MA, Santos JL, Lima JL, Sorouraddin MH. Oscillating chemiluminescence systems: state of the art. Luminescence. 2010;25(6):409–418. doi: 10.1002/bio.1275 PubMed DOI
Van Wijk E, Wijk RV, Bajpai RP, van der Greef J. Statistical analysis of the spontaneously emitted photon signals from palm and dorsal sides of both hands in human subjects. Journal of Photochemistry and Photobiology B: Biology. 2010;99(3):133–143. doi: 10.1016/j.jphotobiol.2010.03.008 PubMed DOI
van Wijk E, van der Greef J, van Wijk R. Photon counts statistics in leukocyte cell dynamics. In: Journal of Physics: Conference Series. vol. 329. IOP Publishing; 2011. p. 012021.
Bajpai RP, Van Wijk E, Van Wijk R, van der Greef J. Attributes characterizing spontaneous ultra-weak photon signals of human subjects. Journal of Photochemistry and Photobiology B: Biology. 2013;129:6–16. doi: 10.1016/j.jphotobiol.2013.09.002 PubMed DOI
Ramanujan VK, Biener G, Herman BA. Scaling behavior in mitochondrial redox fluctuations. Biophysical Journal. 2006;90(10):L70–L72. doi: 10.1529/biophysj.106.083501 PubMed DOI PMC
Ramanujan VK. Metabolic imaging in multiple time scales. Methods. 2014;66(2):222–229. doi: 10.1016/j.ymeth.2013.08.027 PubMed DOI PMC
Van Wijk R, Van Wijk E, Bajpai RP. Photocount distribution of photons emitted from three sites of a human body. Journal of Photochemistry and Photobiology B, Biology. 2006;84(1):46 doi: 10.1016/j.jphotobiol.2006.01.010 PubMed DOI
van Wijk EPA, van Wijk R, Bajpai RP. Quantum squeezed state analysis of spontaneous ultra weak light photon emission of practitioners of meditation and control subjects. Indian J Exp Biol. 2008;46:345–52. PubMed
Bajpai RP. Quantum nature of photon signal emitted by Xanthoria parietina and its implications to biology. Indian J Exp Biol. 2008;46:420–32. PubMed
Cifra M, Brouder C, Nerudová M, Kučera O. Biophotons, coherence and photocount statistics: A critical review. Journal of Luminescence. 2015;164:38–51. doi: 10.1016/j.jlumin.2015.03.020 DOI