Spectral Distribution of Ultra-Weak Photon Emission as a Response to Wounding in Plants: An In Vivo Study

. 2020 Jun 26 ; 9 (6) : . [epub] 20200626

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32604795

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

It is well established that every living organism spontaneously emits photons referred to as ultra-weak photon emission (synonym biophotons or low-level chemiluminescence) which inherently embodies information about the wellbeing of the source. In recent years, efforts have been made to use this feature as a non-invasive diagnostic tool related to the detection of food quality, agriculture and biomedicine. The current study deals with stress resulting from wounding (mechanical injury) on Arabidopsis thaliana and how it modifies the spontaneous ultra-weak photon emission. The ultra-weak photon emission from control (non-wounded) and stressed (wounded) plants was monitored using different modes of ultra-weak photon emission measurement sensors like charge-coupled device (CCD) cameras and photomultiplier tubes (PMT) and the collected data were analyzed to determine the level of stress generated, photon emission patterns, and underlying biochemical process. It is generally considered that electronically excited species formed during the oxidative metabolic processes are responsible for the ultra-weak photon emission. In the current study, a high-performance cryogenic full-frame CCD camera was employed for two-dimensional in-vivo imaging of ultra-weak photon emission (up to several counts/s) and the spectral analysis was done by using spectral system connected to a PMT. The results show that Arabidopsis subjected to mechanical injury enhances the photon emission and also leads to changes in the spectral pattern of ultra-weak photon emission. Thus, ultra-weak photon emission can be used as a tool for oxidative stress imaging and can pave its way into numerous plant application research.

Zobrazit více v PubMed

Usa M., Kobayashi M., Scott R.Q., Maeda T., Hiratsuka R., Inaba H. Simultaneous measurement of biophoton emission and biosurface electric potential from germinating soybean (Glycine max) Protoplasma. 1989;149:64–66. doi: 10.1007/BF01623984. DOI

Devaraj B. Biophotons: Ultraweak light emission from living systems. Curr. Opin. Solid State Mater. Sci. 1997;2:188–193. doi: 10.1016/S1359-0286(97)80064-2. DOI

Kobayashi M. Fluctuation Phenomena: Disorder and Nonlinearity. World Scientific Publishing Company; Singapore: 2003. Modern Technology on Physical Analysis of Biophoton Emission and Its Potential Extracting the Physiological Information; pp. 157–187.

Zhao X., Pang J., Fu J., Wang Y., Yang M., Liu Y., Fan H., Zhang L., Han J. Spontaneous photon emission: A promising non-invasive diagnostic tool for breast cancer. J. Photochem. Photobiol. B. Biol. 2017;166:232–238. doi: 10.1016/j.jphotobiol.2016.12.009. PubMed DOI

Cifra M., Pospíšil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B. Biol. 2014;139:2–10. doi: 10.1016/j.jphotobiol.2014.02.009. PubMed DOI

Cifra M., Brouder C., Nerudová M., Kucera O. Biophotons, coherence and photocount statistics: A critical review. J. Lumin. 2015;164:38–51. doi: 10.1016/j.jlumin.2015.03.020. DOI

Inagaki H., Imaizumi T., Wang G.-X., Tominaga T., Kato K., Iyozumi H., Nukui H. Spontaneous ultraweak photon emission from rice (Oryza sativa L.) and paddy weeds treated with a sulfonylurea herbicide. Pestic. Biochem. Physiol. 2007;89:158–162. doi: 10.1016/j.pestbp.2007.05.005. DOI

Kato K., Iyozumi H., Kageyama C., Inagaki H., Yamaguchi A., Nukui H. Application of ultra-weak photon emission measurements in agriculture. J. Photochem. Photobiol. B. Biol. 2014;139:54–62. doi: 10.1016/j.jphotobiol.2014.06.010. PubMed DOI

Makino T., Kato K., Lyozumi H., Honzawa H., Tachiiri Y., Hiramatsu M. Ultraweak Luminescence Generated by Sweet Potato andFusarium oxysporumInteractions Associated with a Defense Response. Photochem. Photobiol. 1996;64:953–956. doi: 10.1111/j.1751-1097.1996.tb01860.x. PubMed DOI

Hakamata T., Katō K., Makino T., Yamamoto S. Weak photon emission from the Japanese black pine inoculated with pine wood nematode. Jpn. J. Phytopathol. 2004;70:162–167. doi: 10.3186/jjphytopath.70.162. DOI

Musumeci F., Applegate L.A., Privitera G., Scordino A., Tudisco S., Niggli H.J. Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: Temperature dependence. J. Photochem. Photobiol. B. Biol. 2005;79:93–99. doi: 10.1016/j.jphotobiol.2004.12.002. PubMed DOI

Nakamura K., Hiramatsu M. Ultra-weak photon emission from human hand: Influence of temperature and oxygen concentration on emission. J. Photochem. Photobiol. B. Biol. 2005;80:156–160. doi: 10.1016/j.jphotobiol.2005.02.005. PubMed DOI

Cifra M., van Wijk E., van Wijk R. Temperature Induced Changes of Spontaneous Photon Emission from Human Hands; Proceedings of the PIERS; Cambridge, MA, USA. 2–6 July 2008; pp. 907–911.

Chen W.L., Xing D., Tan S., Tang Y., He Y. Imaging of ultra-weak bio-chemiluminescence and singlet oxygen generation in germinating soybean in response to wounding. Luminescence. 2003;18:37–41. doi: 10.1002/bio.703. PubMed DOI

Kawabata R., Miike T., Uefune M., Okabe H., Takagi M., Kai S. Biophoton Measurement of Herbivore-Induced Plant Responses. Jpn. J. Appl. Èntomol. ZooL. 2004;48:289–296. doi: 10.1303/jjaez.2004.289. DOI

Iyozumi H., Kato K., Kageyama C., Inagaki H., Yamaguchi A., Furuse K., Baba K., Tsuchiya H. Plant defense activators potentiate the generation of elicitor-responsive photon emission in rice. Physiol. Mol. Plant Pathol. 2005;66:68–74. doi: 10.1016/j.pmpp.2005.04.007. DOI

Bertogna E., Bezerra J., Conforti E., Gallep C.M. Acute stress in seedlings detected by ultra-weak photon emission. J. Photochem. Photobiol. B. Biol. 2013;118:74–76. doi: 10.1016/j.jphotobiol.2012.11.005. PubMed DOI

Kausar R., Hossain Z., Makino T., Komatsu S. Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Mol. Boil. Rep. 2012;39:10573–10579. doi: 10.1007/s11033-012-1945-9. PubMed DOI

Van Breusegem F., Vranová E., Dat J.F., Inzé D. The role of active oxygen species in plant signal transduction. Plant Sci. 2001;161:405–414. doi: 10.1016/S0168-9452(01)00452-6. DOI

Prasad A., Sedlářová M., Kale R., Pospíšil P. Lipoxygenase in singlet oxygen generation as a response to wounding: In vivo imaging in Arabidopsis thaliana. Sci. Rep. 2017;7:9831. doi: 10.1038/s41598-017-09758-1. PubMed DOI PMC

Prasad A., Sedlářová M., Balukova A., Rác M., Pospíšil P. Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana. Front. Plant Sci. 2020;10 doi: 10.3389/fpls.2019.01660. PubMed DOI PMC

Prasad A., Pospíšil P. Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: Role of reactive oxygen species. J. Biophotonics. 2011;4:840–849. doi: 10.1002/jbio.201100073. PubMed DOI

Prasad A., Pospíšil P. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes. PLoS ONE. 2011;6:e22345. doi: 10.1371/journal.pone.0022345. PubMed DOI PMC

Rastogi A., Pospíšil P. Production of hydrogen peroxide and hydroxyl radical in potato tuber during the necrotrophic phase of hemibiotrophic pathogen Phytophthora infestans infection. J. Photochem. Photobiol. B. Biol. 2012;117:202–206. doi: 10.1016/j.jphotobiol.2012.10.001. PubMed DOI

Prasad A., Pospíšil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 2013;3 doi: 10.1038/srep01211. PubMed DOI PMC

Pospíšil P., Prasad A., Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B. Biol. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI

Rác M., Sedlářová M., Pospíšil P. The formation of electronically excited species in the human multiple myeloma cell suspension. Sci. Rep. 2015;5:8882. doi: 10.1038/srep08882. PubMed DOI PMC

Van Wijk E.P.A., van Wijk R., Cifra M. Spontaneous ultra-weak photon emission from human hands varies diurnally—Art. No. 66331J. In: Popp J., VonBally G., editors. Biophotonics 2007: Optics in Life Science2007, Proceedings of the SPIE-OSA Biomedical Optics, Munich, Germany, 2007. SPIE; Bellingham, WA, USA: 2007. p. J6331.

Burgos R.C.R., Schoeman J.C., Van Winden L.J., Cervinková K., Ramautar R., Van Wijk E.P.A., Cifra M., Berger R., Hankemeier T., Van Der Greef J. Ultra-weak photon emission as a dynamic tool for monitoring oxidative stress metabolism. Sci. Rep. 2017;7:1229. doi: 10.1038/s41598-017-01229-x. PubMed DOI PMC

Wijk R.V., Wijk E.P.A.V., Wiegant F.A.C., Ives J. Free radicals and low-level photon emission in human pathogenesis: State of the art. Indian J. Exp. Biol. 2008;46:273–309. PubMed

Hossu M., Ma L., Chen W. Nonlinear enhancement of spontaneous biophoton emission of sweet potato by silver nanoparticles. J. Photochem. Photobiol. B. Biol. 2010;99:44–48. doi: 10.1016/j.jphotobiol.2010.02.002. PubMed DOI

Hossu M., Ma L., Zou X., Chen W. Enhancement of biophoton emission of prostate cancer cells by Ag nanoparticles. Cancer Nanotechnol. 2013;4:21–26. doi: 10.1007/s12645-013-0034-7. PubMed DOI PMC

Rastogi A., Pospíšil P. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Plant Physiol. Biochem. 2010;48:117–123. doi: 10.1016/j.plaphy.2009.12.011. PubMed DOI

Tsuchida K., Kobayashi M. Oxidative stress in human facial skin observed by ultraweak photon emission imaging and its correlation with biophysical properties of skin. Sci. Rep. 2020;10:9626. doi: 10.1038/s41598-020-66723-1. PubMed DOI PMC

Desikan R. Regulation of the Arabidopsis Transcriptome by Oxidative Stress. Plant Physiol. 2001;127:159–172. doi: 10.1104/pp.127.1.159. PubMed DOI PMC

Neill S.J. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 2002;5:388–395. doi: 10.1016/S1369-5266(02)00282-0. PubMed DOI

Neill S.J., Desikan R., Clarke A., Hancock J.T. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 2002;128:13–16. doi: 10.1104/pp.010707. PubMed DOI PMC

Dat J., Vandenabeele S., Van Montagu M., Van Breusegem F., Vranová E., Inzé D. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 2000;57:779–795. doi: 10.1007/s000180050041. PubMed DOI PMC

Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009. PubMed DOI

Apel K., Hirt H. Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI

Foyer C.H., Noctor G. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. PubMed DOI PMC

Slawinski J., Ezzahir A., Godlewski M., Kwiecinska T., Rajfur Z., Sitko D., Wierzuchowska D. Stress-induced photon emission from perturbed organisms. Cell. Mol. Life Sci. 1992;48:1041–1058. doi: 10.1007/BF01947992. PubMed DOI

Pospíšil P., Prasad A., Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules. 2019;9:258. doi: 10.3390/biom9070258. PubMed DOI PMC

Van Wijk R., Van Wijk E.P., Bajpai R.P. Photocount distribution of photons emitted from three sites of a human body. J. Photochem. Photobiol. B. Biol. 2006;84:46–55. doi: 10.1016/j.jphotobiol.2006.01.010. PubMed DOI

Denvir D.J., Coates C.G. Electron-multiplying CCD technology: Application to ultrasensitive detection of biomolecules. Int. Symp. Biomed. Opt. 2002;4626:502–512. doi: 10.1117/12.472117. DOI

Kobayashi M., Kikuchi D., Okamura H. Imaging of Ultraweak Spontaneous Photon Emission from Human Body Displaying Diurnal Rhythm. PLoS ONE. 2009;4:e6256. doi: 10.1371/journal.pone.0006256. PubMed DOI PMC

Tsuchida K., Iwasa T., Kobayashi M. LB1586 Noninvasive imaging of UV-induced oxidative stress in human skin using ultra-weak photon emission. J. Investig. Dermatol. 2018;138:B20. doi: 10.1016/j.jid.2018.06.124. DOI

Usui S., Tada M., Kobayashi M. Non-invasive visualization of physiological changes of insects during metamorphosis based on biophoton emission imaging. Sci. Rep. 2019;9:8576. doi: 10.1038/s41598-019-45007-3. PubMed DOI PMC

Havaux M., Triantaphylides C., Genty B. Autoluminescence imaging: A non-invasive tool for mapping oxidative stress. Trends Plant Sci. 2006;11:480–484. doi: 10.1016/j.tplants.2006.08.001. PubMed DOI

SaeidFirozeh H., Shafiekhani A., Cifra M., Masoudi A.A. Endogenous Chemiluminescence from Germinating Arabidopsis Thaliana Seeds. Sci. Rep. 2018;8:16231. doi: 10.1038/s41598-018-34485-6. PubMed DOI PMC

Savatin D.V., Gramegna G., Modesti V., Cervone F. Wounding in the plant tissue: The defense of a dangerous passage. Front. Plant Sci. 2014;5:470. doi: 10.3389/fpls.2014.00470. PubMed DOI PMC

Oros C., Alves F. Leaf wound induced ultraweak photon emission is suppressed under anoxic stress: Observations of Spathiphyllum under aerobic and anaerobic conditions using novel in vivo methodology. PLoS ONE. 2018;13:e0198962. doi: 10.1371/journal.pone.0198962. PubMed DOI PMC

Flor-Henry M., McCabe T.C., De Bruxelles G.L., Roberts M.R. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves. BMC Plant Boil. 2004;4:19. doi: 10.1186/1471-2229-4-19. PubMed DOI PMC

Birtic S., Triantaphylidès C., Ksas B., Genty B., Mueller M.J., Havaux M. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. Plant J. 2011;67:1103–1115. doi: 10.1111/j.1365-313X.2011.04646.x. PubMed DOI

Havaux M. Spontaneous and thermoinduced photon emission: New methods to detect and quantify oxidative stress in plants. Trends Plant Sci. 2003;8:409–413. doi: 10.1016/S1360-1385(03)00185-7. PubMed DOI

Makino T., Kato K., Iyozumi H., Aoshima Y. Biophoton emission and defence systems in plants. In: Shen X., Van Wijk R., editors. Optical Science and Engineering for the 21st Century. Springer; New York, NY, USA: 2005. pp. 205–218.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace