The formation of electronically excited species in the human multiple myeloma cell suspension
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25744165
PubMed Central
PMC4351533
DOI
10.1038/srep08882
PII: srep08882
Knihovny.cz E-zdroje
- MeSH
- elektrofyziologické jevy * účinky léků MeSH
- elektronová paramagnetická rezonance MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- mnohočetný myelom metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové buňky kultivované MeSH
- peroxid vodíku metabolismus farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls (3)(R = O)*. The kinetics of (3)(R = O)* formation in the real time, as measured by one-dimensional ultra-weak photon emission using low-noise photomultiplier, showed immediate enhancement followed by a slow decay. In parallel to the formation of (3)(R = O)*, the formation of singlet oxygen ((1)O2) in U266 cells caused by the addition of H2O2 was visualized by the imaging of (1)O2 using the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Additionally, the formation of (1)O2 after the addition of H2O2 to cell suspension was detected by electron paramagnetic resonance spin-trapping spectroscopy using 2,2,6,6-tetramethyl-4-piperidone. Presented results indicate that the addition of H2O2 to cell suspension results in the formation of (3)(R = O)* and (1)O2 in U266 cell suspension. The contribution of the cell-free medium to the formation of electronically excited species was discussed.
Zobrazit více v PubMed
Pospíšil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1817, 218–231, 10.1016/j.bbabio.2011.05.017 (2012). PubMed DOI
Han D., Williams E. & Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411–416, 10.1042/0264-6021:3530411 (2001). PubMed DOI PMC
Cocheme H. M. & Murphy M. P. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 283, 1786–1798, 10.1074/jbc.M708597200 (2008). PubMed DOI
Dahlgren C., Karlsson A. & Bylund J. Measurement of respiratory burst products generated by professional phagocytes. Methods Mol. Biol. 412, 349–363, 10.1007/978-1-59745-467-4_23 (2007). PubMed DOI
Gutteridge J. M. C. Lipid-Peroxidation and Antioxidants as Biomarkers of Tissue-Damage. Clin. Chem. 41, 1819–1828 (1995). PubMed
Halliwell B. & Gutteridge J. M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 18, 125–126, 10.1016/0891-5849(95)91457-3 (1995). PubMed DOI
Gutteridge J. M. & Halliwell B. Antioxidants: Molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 393, 561–564, 10.1016/j.bbrc.2010.02.071 (2010). PubMed DOI
Dean R. T., Gieseg S. & Davies M. J. Reactive Species and Their Accumulation on Radical-Damaged Proteins. Trends Biochem. Sci. 18, 437–441, 10.1016/0968-0004(93)90145-D (1993). PubMed DOI
Miyamoto S. et al. Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life 59, 322–331, 10.1080/15216540701242508 (2007). PubMed DOI
Davies M. J., Fu S. L. & Dean R. T. Protein Hydroperoxides Can Give Rise to Reactive Free-Radicals. Biochem. J. 305, 643–649 (1995). PubMed PMC
Cilento G. & Nascimento A. L. T. O. Generation of Electronically Excited Triplet Species at the Cellular-Level - a Potential Source of Genotoxicity. Toxicol. Lett. 67, 17–28, 10.1016/0378-4274(93)90043-W (1993). PubMed DOI
Darmanyan A. P. & Foote C. S. Definition of the Nature of Ketone Triplet-States on the Basis of Singlet Oxygen Generation Efficiency. J. Phys. Chem.-Us 97, 4573–4576, 10.1021/J100120a003 (1993). DOI
Cilento G. & Adam W. From free radicals to electronically excited species. Free Radic. Biol. Med. 19, 103–114, 10.1016/0891-5849(95)00002-f (1995). PubMed DOI
Pospíšil P., Prasad A. & Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photoch. Photobio. B 139, 11–23, 10.1016/j.jphotobiol.2014.02.008 (2014). PubMed DOI
Adam W., Bosio S. G. & Turro N. J. Highly diastereoselective dioxetane formation in the photooxygenation of enecarbamates with an oxazolidinone chiral auxiliary: Steric control in the [2 + 2] cycloaddition of singlet oxygen through conformational alignment. J. Am. Chem. Soc. 124, 8814–8815, 10.1021/Ja026815k (2002). PubMed DOI
Cilento G. Excited electronic states in dark biological processes. Q. Rev. Biophys. 6, 485–501 (1974). PubMed
Bechara E. J. H., Oliveira O., Duran N., Debaptista R. C. & Cilento G. Peroxidase catalyzed generation of triplet acetone. Photochem. Photobiol. 30, 101–110, 10.1111/j.1751-1097.1979.tb07121.x (1979). DOI
Cilento G. Generation of electronically excited triplet species in biochemical systems. Pure Appl. Chem. 56, 1179–1190, 10.1351/pac198456091179 (1984). DOI
Cilento G., Debaptista C. & Brunetti I. L. Triplet Carbonyls from Photophysics to Biochemistry. J. Mol. Struct. 324, 45–48, 10.1016/0022-2860(94)08225-1 (1994). DOI
Mano C. M. et al. Excited singlet molecular O-2 ((1)Delta g) is generated enzymatically from excited carbonyls in the dark. Sci. Rep. 4, 10.1038/srep05938 (2014). PubMed DOI PMC
Wagner P. in Triplet States III Vol. 66 Top. Curr. Chem. Ch. 1, 1–52 (Springer Berlin Heidelberg, 1976). PubMed
Sundquist A. R., Hanusch M., Stahl W. & Sies H. Cis-trans isomerization of carotenoids by the triplet carbonyl source 3-hydroxymethyl-3,4,4-trimethyl-1,2-dioxetane. Photochem. Photobiol. 57, 785–791, 10.1111/j.1751-1097.1993.tb09211.x (1993). PubMed DOI
Russell G. A. Deuterium-Isotope Effects in the Autoxidation of Aralkyl Hydrocarbons - Mechanism of the Interaction of Peroxy Radicals. J. Am. Chem. Soc. 79, 3871–3877, 10.1021/Ja01571a068 (1957). DOI
Howard J. A. & Ingold K. U. Absolute rate constants for hydrocarbon autoxidation. V. The hydroperoxy radical in chain propagation and termination. Can. J. Chemistry 45, 785–792, 10.1139/v67-131 (1967). DOI
Miyamoto S. et al. Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. Proc. Natl. Acad. Sci. U S A 103, 293–298, 10.1073/pnas.0508170103 (2006). PubMed DOI PMC
Miyamoto S. et al. Linoleic acid hydroperoxide reacts with hypochlorite generating peroxyl radical intermediates and singlet oxygen. Free Radic. Biol. Med. 37, S16–S16 (2004).
Miyamoto S., Martinez G. R., Medeiros M. H. & Di Mascio P. Singlet molecular oxygen generated from lipid hydroperoxides by the russell mechanism: studies using 18(O)-labeled linoleic acid hydroperoxide and monomol light emission measurements. J. Am. Chem. Soc. 125, 6172–6179, 10.1021/ja029115o (2003). PubMed DOI
Sun S., Bao Z., Ma H., Zhang D. & Zheng X. Singlet oxygen generation from the decomposition of alpha-linolenic acid hydroperoxide by cytochrome c and lactoperoxidase. Biochemistry 46, 6668–6673, 10.1021/bi700178u (2007). PubMed DOI
Mendenhall G. D., Sheng X. C. & Wilson T. Yields of Excited Carbonyl Species from Alkoxyl and from Alkylperoxyl Radical Dismutations. J. Am. Chem. Soc. 113, 8976–8977, 10.1021/Ja00023a073 (1991). DOI
Cifra M. & Pospíšil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photoch. Photobio. B 139, 2–10, 10.1016/j.jphotobiol.2014.02.009 (2014). PubMed DOI
Matsumoto M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence. J. Photoch. Photobio. C 5, 27–53, 10.1016/j.photochemrev.2004.02.001 (2004). DOI
Timmins G. S. et al. Lipid peroxidation-dependent chemiluminescence from the cyclization of alkylperoxyl radicals to dioxetane radical intermediates. Chem. Res. Toxicol. 10, 1090–1096, 10.1021/tx970075p (1997). PubMed DOI
Adam W., Kazakov D. V. & Kazakov V. P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 105, 3371–3387, 10.1021/cr0300035 (2005). PubMed DOI
Khan A. U. in In Singlet O2 Vol. 1 (ed Frimer A. A.) 39–79 (CRC Press, Boca Racon, FL 1985).
Flors C. et al. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J. Exp. Bot. 57, 1725–1734, 10.1093/jxb/erj181 (2006). PubMed DOI
Gollmer A. et al. Singlet Oxygen Sensor Green (R): Photochemical Behavior in Solution and in a Mammalian Cell. Photochem. Photobiol. 87, 671–679, 10.1111/j.1751-1097.2011.00900.x (2011). PubMed DOI
Shen Y. et al. Indirect imaging of singlet oxygen generation from a single cell. Laser Phys. Lett. 8, 232–238, 10.1002/lapl.201010113 (2011). DOI
Wei S. H. et al. Synthesis and Type I/Type II photosensitizing properties of a novel amphiphilic zinc phthalocyanine. Dyes Pigments 71, 61–67, 10.1016/j.dyepig.2005.06.016 (2006). DOI
Bienert G. P., Schjoerring J. K. & Jahn T. P. Membrane transport of hydrogen peroxide. BBA-Biomembranes 1758, 994–1003, 10.1016/j.bbamem.2006.02.015 (2006). PubMed DOI
Barbouti A., Doulias P. T., Zhu B. Z., Frei B. & Galaris D. Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Free Radic. Biol. Med. 31, 490–498, 10.1016/s0891-5849(01)00608-6 (2001). PubMed DOI
Minisini M. P., Kantengwa S. & Polla B. S. DNA-damage and stress protein-synthesis induced by oxidative stress proceed independently in the human premonocytic line U937. Mutat. Res.-DNA Repair 315, 169–179, 10.1016/0921-8777(94)90016-7 (1994). PubMed DOI
Hoffmann M. E. & Meneghini R. Action of hydrogen peroxide on human fibroblast in culture. Photochem. Photobiol. 30, 151–155, 10.1111/j.1751-1097.1979.tb07128.x (1979). PubMed DOI
Cadenas E., Varsavsky A. I., Boveris A. & Chance B. Oxygen- or organic hydroperoxide-induced chemiluminescence of brain and liver homogenates. Biochem. J. 198, 645–654 (1981). PubMed PMC
Cadenas E., Boveris A. & Chance B. Spectral analysis of the low level chemiluminescence of H2O2-supplemented ferricytochrome c. FEBS Lett. 112, 285–288, 10.1016/0014-5793(80)80199-2 (1980). PubMed DOI
Cadenas E., Arad I. D., Boveris A., Fisher A. B. & Chance B. Partial Spectral-Analysis of the Hydroperoxide-Induced Chemi-Luminescence of the Perfused Lung. FEBS Lett. 111, 413–418, 10.1016/0014-5793(80)80839-8 (1980). PubMed DOI
Hideg E., Kobayashi M. & Inaba H. Spontaneous Ultraweak Light-Emission from Respiring Spinach Leaf Mitochondria. Biochim. Biophys. Acta 1098, 27–31 (1991).
Mathew B. G., Haorah J. & Kumar S. Weak Luminescence from Cotyledons of Cicer-Arietinum L Induced by Sudden Freezing and Thawing - the Role of Superoxide, Free-Radicals and Singlet Oxygen in the Phenomenon. J. Photoch. Photobio. B 16, 297–304, 10.1016/1011-1344(92)80017-P (1992). DOI
Takeda M. et al. A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett. 127, 155–160, 10.1016/s0304-3835(98)00064-0 (1998). PubMed DOI
Hall R., Chamulitrat W., Takahashi N., Chignell C. & Mason R. Detection of Singlet oxygem phosphorescence during chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide. J. Biol. Chem. 264, 7900–7906 (1989). PubMed
Prado F. M. et al. Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA. Free Radic. Biol. Med. 47, 401–409, 10.1016/j.freeradbiomed.2009.05.001 (2009). PubMed DOI
Uemi M., Ronsein G. E., Miyamoto S., Medeiros M. H. & Di Mascio P. Generation of cholesterol carboxyaldehyde by the reaction of singlet molecular oxygen [O2 (1Delta(g))] as well as ozone with cholesterol. Chem. Res. Toxicol. 22, 875–884, 10.1021/tx800447b (2009). PubMed DOI
Niu Q. J. & Mendenhall G. D. Yields of Singlet Molecular-Oxygen from Peroxyl Radical Termination. J. Am. Chem. Soc. 114, 165–172, 10.1021/Ja00027a024 (1992). DOI
Kikuchi J., Koyama D., Mukai H. Y. & Furukawa Y. Suitable drug combination with bortezomib for multiple myeloma under stroma-free conditions and in contact with fibronectin or bone marrow stromal cells. Int. J. Hematol. 99, 726–736, 10.1007/s12185-014-1573-3 (2014). PubMed DOI
Sedlářová M. et al. Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. Eur. J. Plant Pathol. 129, 267–280, 10.1007/s10658-010-9626-9 (2011). DOI