High-quality and universal empirical atomic charges for chemoinformatics applications

. 2015 ; 7 () : 59. [epub] 20151202

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26633997

Grantová podpora
R01 GM071872 NIGMS NIH HHS - United States
U01 GM094612 NIGMS NIH HHS - United States
U54 GM094618 NIGMS NIH HHS - United States

BACKGROUND: Partial atomic charges describe the distribution of electron density in a molecule and therefore provide clues to the chemical behaviour of molecules. Recently, these charges have become popular in chemoinformatics, as they are informative descriptors that can be utilised in pharmacophore design, virtual screening, similarity searches etc. Especially conformationally-dependent charges perform very successfully. In particular, their fast and accurate calculation via the Electronegativity Equalization Method (EEM) seems very promising for chemoinformatics applications. Unfortunately, published EEM parameter sets include only parameters for basic atom types and they often miss parameters for halogens, phosphorus, sulphur, triple bonded carbon etc. Therefore their applicability for drug-like molecules is limited. RESULTS: We have prepared six EEM parameter sets which enable the user to calculate EEM charges in a quality comparable to quantum mechanics (QM) charges based on the most common charge calculation schemes (i.e., MPA, NPA and AIM) and a robust QM approach (HF/6-311G, B3LYP/6-311G). The calculated EEM parameters exhibited very good quality on a training set ([Formula: see text]) and also on a test set ([Formula: see text]). They are applicable for at least 95 % of molecules in key drug databases (DrugBank, ChEMBL, Pubchem and ZINC) compared to less than 60 % of the molecules from these databases for which currently used EEM parameters are applicable. CONCLUSIONS: We developed EEM parameters enabling the fast calculation of high-quality partial atomic charges for almost all drug-like molecules. In parallel, we provide a software solution for their easy computation (http://ncbr.muni.cz/eem_parameters). It enables the direct application of EEM in chemoinformatics.

Zobrazit více v PubMed

Svobodová Vařeková R, Geidl S, Ionescu C-M, Skřehota O, Kudera M, Sehnal D, Bouchal T, Abagyan R, Huber HJ, Koča J. Predicting pKa values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes. J Chem Inf Model. 2011;51(8):1795–1806. doi: 10.1021/ci200133w. PubMed DOI

Svobodová Vařeková R, Geidl S, Ionescu C-M, Skřehota O, Bouchal T, Sehnal D, Abagyan R, Koča J. Predicting pKa values from EEM atomic charges. J Chem Inf. 2013;5(1):18. PubMed PMC

Geidl S, Svobodová Vařeková R, Bendová V, Petrusek L, Ionescu C-M, Jurka Z, Abagyan R, Koča J. How does the methodology of 3D structure preparation influence the quality of pKa prediction? J Chem Inf Model. 2015;55(6):1088–1097. doi: 10.1021/ci500758w. PubMed DOI PMC

Dixon SL, Jurs PC. Estimation of pKa for organic oxyacids using calculated atomic charges. J Comput Chem. 1993;14:1460–1467. doi: 10.1002/jcc.540141208. DOI

Zhang J, Kleinöder T, Gasteiger J. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model. 2006;46:2256–2256. doi: 10.1021/ci060129d. PubMed DOI

Gross KC, Seybold PG, Hadad CM. Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols. Int J Quantum Chem. 2002;90:445–458. doi: 10.1002/qua.10108. DOI

Ghafourian T, Dearden JC. The use of atomic charges and orbital energies as hydrogen-bonding-donor parameters for QSAR studies: comparison of MNDO, AM1 and PM3 methods. J Pharm Pharmacol. 2000;52(6):603–610. doi: 10.1211/0022357001774435. PubMed DOI

Dudek AZ, Arodz T, Gálvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen. 2006;9(3):213–228. doi: 10.2174/138620706776055539. PubMed DOI

Karelson M, Lobanov VS, Katritzky AR. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 1996;96(3):1027–1044. doi: 10.1021/cr950202r. PubMed DOI

Todeschini R, Consonni V. Handbook of molecular descriptors. Weinheim: Wiley-VCH Verlag GmbH; 2008.

Galvez J, Garcia R, Salabert MT, Soler R. Charge indexes. New topological descriptors. J Chem Inf Model. 1994;34(3):520–525. doi: 10.1021/ci00019a008. DOI

Stalke D. Meaningful structural descriptors from charge density. Chemistry. 2011;17(34):9264–9278. doi: 10.1002/chem.201100615. PubMed DOI

Wermuth CG. Pharmacophores: historical perspective and viewpoint from a medicinal chemist. In: Langer T, Hoffmann RD, editors. Pharmacophores and pharmacophore searches. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.

MacDougall PJ, Henze CE. Fleshing-out pharmacophores with volume rendering of the Laplacian of the charge density and hyperwall visualization technology. In: Matta CF, Boyd RJ, editors. The quantum theory of atoms in molecules: from solid state to DNA and drug design. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007. pp. 499–514.

Clement OO, Mehl AT. HipHop: pharmacophores based on multiple common-feature alignments. In: Güner OF, editor. Pharmacophore perception, development, and use in drug design. La Jolla: International University Line; 2000. pp. 69–84.

Lyne PD. Structure-based virtual screening: an overview. Drug Discov Today. 2002;7(20):1047–1055. doi: 10.1016/S1359-6446(02)02483-2. PubMed DOI

Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem. 2000;43(25):4759–4767. doi: 10.1021/jm001044l. PubMed DOI

Park H, Lee J, Lee S. Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins. 2006;65(3):549–554. doi: 10.1002/prot.21183. PubMed DOI

Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, Sheridan RP. Chemical similarity using physiochemical property descriptors. J Chem Inf Model. 1996;36(1):118–127. doi: 10.1021/ci950274j. DOI

Nikolova N, Jaworska J. Approaches to measure chemical similarity—a review. QSAR Comb Sci. 2003;22(910):1006–1006. doi: 10.1002/qsar.200330831. DOI

Holliday JD, Jelfs SP, Willett P, Gedeck P. Calculation of intersubstituent similarity using R-group descriptors. J Chem Inf Comput Sci. 2003;43(2):406–411. doi: 10.1021/ci025589v. PubMed DOI

Tervo AJ, Rönkkö T, Nyrönen TH, Poso A. BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications. J Med Chem. 2005;48(12):4076–4086. doi: 10.1021/jm049123a. PubMed DOI

Vainio MJ, Johnson MS. Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model. 2007;47(6):2462–2474. doi: 10.1021/ci6005646. PubMed DOI

Lemmen C, Lengauer T, Klebe G. FLEXS: a method for fast flexible ligand superposition. J Med Chem. 1998;41(23):4502–4520. doi: 10.1021/jm981037l. PubMed DOI

Mulliken RS. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J Chem Phys. 1955;23(10):1833. doi: 10.1063/1.1740588. DOI

Mulliken RS. Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys. 1955;23(10):1841. doi: 10.1063/1.1740589. DOI

Löwdin P-O. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys. 1950;18(3):365. doi: 10.1063/1.1747632. DOI

Reed AE, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys. 1983;78(6):4066–4073. doi: 10.1063/1.445134. DOI

Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735. doi: 10.1063/1.449486. DOI

Bader RFW. Atoms in molecules. Acc Chem Res. 1985;18(1):9–15. doi: 10.1021/ar00109a003. DOI

Bader RFW. A quantum theory of molecular structure and its applications. Chem Rev. 1991;91(5):893–928. doi: 10.1021/cr00005a013. DOI

Hirshfeld FL. Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta. 1977;44(2):129–138. doi: 10.1007/BF00549096. DOI

Ritchie JP. Electron density distribution analysis for nitromethane, nitromethide, and nitramide. J Am Chem Soc. 1985;107(7):1829–1837. doi: 10.1021/ja00293a005. DOI

Ritchie JP, Bachrach SM. Some methods and applications of electron density distribution analysis. J Comput Chem. 1987;8(4):499–509. doi: 10.1002/jcc.540080430. DOI

Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem. 1990;11(3):361–373. doi: 10.1002/jcc.540110311. DOI

Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comput Chem. 1984;5(2):129–145. doi: 10.1002/jcc.540050204. DOI

Besler BH, Merz KM, Kollman PA. Atomic charges derived from semiempirical methods. J Comput Chem. 1990;11(4):431–439. doi: 10.1002/jcc.540110404. DOI

Kelly CP, Cramer CJ, Truhlar DG. Accurate partial atomic charges for high-energy molecules using class IV charge models with the MIDI! basis set. Theor Chem Acc. 2005;113(3):133–151. doi: 10.1007/s00214-004-0624-x. DOI

Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Gasteiger J, Marsili M. A new model for calculating atomic charges in molecules. Tetrahedron Lett. 1978;19(34):3181–3184. doi: 10.1016/S0040-4039(01)94977-9. DOI

Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI

Cho K-H, Kang YK, No KT, Scheraga HA. A fast method for calculating geometry-dependent net atomic charges for polypeptides. J Phys Chem B. 2001;105(17):3624–3624. doi: 10.1021/jp0023213. DOI

Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS. Atomic charges via electronegativity equalization: generalizations and perspectives. Adv Quantum Chem. 2006;51:139–156. doi: 10.1016/S0065-3276(06)51004-4. DOI

Shulga DA, Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS. Fast tools for calculation of atomic charges well suited for drug design. SAR QSAR Environ Res. 2010;19(1–2):153–165. PubMed

Mortier WJ, Ghosh SK, Shankar S. Electronegativity equalization method for the calculation of atomic charges in molecules. J Am Chem Soc. 1986;108:4315–4320. doi: 10.1021/ja00275a013. DOI

Rappe AK, Goddard WA. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95(8):3358–3363. doi: 10.1021/j100161a070. DOI

Nistor RA, Polihronov JG, Müser MH, Mosey NJ. A generalization of the charge equilibration method for nonmetallic materials. J Chem Phys. 2006;125(9):094108. doi: 10.1063/1.2346671. PubMed DOI

Mathieu D. Split charge equilibration method with correct dissociation limits. J Chem Phys. 2007;127(22):224103. doi: 10.1063/1.2803060. PubMed DOI

Svobodová Vařeková R, Jiroušková Z, Vaněk J, Suchomel S, Koča J. Electronegativity equalization method: parameterization and validation for large sets of organic, organohalogene and organometal molecule. Int J Mol Sci. 2007;8:572–572. doi: 10.3390/i8070572. DOI

Janssens GOA, Baekelandt BG, Toufar H, Mortier WJ, Schoonheydt RA. Comparison of cluster and infinite crystal calculations on zeolites with the electronegativity equalization method (EEM) J Phys Chem. 1995;99(10):3251–3258. doi: 10.1021/j100010a041. DOI

Heidler R, Janssens GOA, Mortier WJ, Schoonheydt RA. Charge sensitivity analysis of intrinsic basicity of Faujasite-type zeolites using the electronegativity equalization method (EEM) J Phys Chem. 1996;100(50):19728–19734. doi: 10.1021/jp9615619. DOI

Sorich MJ, McKinnon RA, Miners JO, Winkler DA, Smith PA. Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method. J Med Chem. 2004;47(21):5311–5317. doi: 10.1021/jm0495529. PubMed DOI

Bultinck P, Langenaeker W, Carbó-Dorca R, Tollenaere JP. Fast calculation of quantum chemical molecular descriptors from the electronegativity equalization method. J Chem Inf Comput Sci. 2003;43(2):422–428. doi: 10.1021/ci0255883. PubMed DOI

Smirnov KS, van de Graaf B. Consistent implementation of the electronegativity equalization method in molecular mechanics and molecular dynamics. J Chem Soc Faraday Trans. 1996;92(13):2469. doi: 10.1039/ft9969202469. DOI

Ionescu C-M, Geidl S, Svobodová Vařeková R, Koča J. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method. J Chem Inf Model. 2013;53(10):2548–2548. doi: 10.1021/ci400448n. PubMed DOI

Baekelandt BG, Mortier WJ, Lievens JL, Schoonheydt RA. Probing the reactivity of different sites within a molecule or solid by direct computation of molecular sensitivities via an extension of the electronegativity equalization method. J Am Chem Soc. 1991;113(18):6730–6734. doi: 10.1021/ja00018a003. DOI

Jiroušková Z, Vařeková RS, Vaněk J, Koča J. Electronegativity equalization method: parameterization and validation for organic molecules using the Merz-Kollman-Singh charge distribution scheme. J Comput Chem. 2009;30(7):1174–1178. doi: 10.1002/jcc.21142. PubMed DOI

Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Van Alsenoy C, Tollenaere JP. The electronegativity equalization method II: applicability of different atomic charge schemes. J Phys Chem A. 2002;106(34):7895–7901. doi: 10.1021/jp020547v. DOI

Ouyang Y, Ye F, Liang Y. A modified electronegativity equalization method for fast and accurate calculation of atomic charges in large biological molecules. Phys Chem Chem Phys. 2009;11(29):6082–6089. doi: 10.1039/b821696g. PubMed DOI

Bultinck P, Vanholme R, Popelier PLA, De Proft F, Geerlings P. High-speed calculation of AIM charges through the electronegativity equalization method. J Phys Chem A. 2004;108(46):10359–10366. doi: 10.1021/jp046928l. DOI

O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G. Open Babel: an open chemical toolbox. J Chem Inf. 2011;3(1):33–47. PubMed PMC

Puranen JS, Vainio MJ, Johnson MS. Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J Comput Chem. 2010;31(8):1722–1732. PubMed

Svobodová Vařeková R, Koča J. Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization method. J Comput Chem. 2006;3:396–405. PubMed

Bultinck P, Carbó-Dorca R, Langenaeker W. Negative Fukui functions: new insights based on electronegativity equalization. J Chem Phys. 2003;118(10):4349. doi: 10.1063/1.1542875. DOI

Burden FR, Polley MJ, Winkler DA. Toward novel universal descriptors: charge fingerprints. J Chem Inf Model. 2009;49(3):710–715. doi: 10.1021/ci800290h. PubMed DOI

Open NCI Database (2012) Release 4. http://cactus.nci.nih.gov/download/nci/

Sadowski J, Gasteiger J. From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem Rev. 1993;93:2567–2581. doi: 10.1021/cr00023a012. DOI

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 09, Revision E.01. http://www.gaussian.com

Todd A Keith (2015) AIMAll 15.05.18. http://aim.tkgristmill.com

Raček T, Svobodová Vařeková R, Křenek A, Koča J NEEMP—tool for parameterization of empirical charge calculation method EEM. http://ncbr.muni.cz/neemp/ PubMed

Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M(2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):901–906 PubMed PMC

Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2004) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(Database issue):1091–1097 PubMed PMC

Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(Database issue):1083–1090 PubMed PMC

Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. In: Wheeler R, Spellmeyer D (eds) Annual Reports in Computational Chemistry, vol. 4, Chap 12. Elsevier, Oxford

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing. http://www.r-project.org/

Ionescu CM, Sehnal D, Falginella FL, Pant P, Pravda L, Bouchal T, Svobodová Vařeková R, Geidl S, Koča J (2015) AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminf 7(1):50 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...