High-quality and universal empirical atomic charges for chemoinformatics applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 GM071872
NIGMS NIH HHS - United States
U01 GM094612
NIGMS NIH HHS - United States
U54 GM094618
NIGMS NIH HHS - United States
PubMed
26633997
PubMed Central
PMC4667495
DOI
10.1186/s13321-015-0107-1
PII: 107
Knihovny.cz E-zdroje
- Klíčová slova
- Drug-like molecules, EEM, Electronegativity Equalization Method, Partial atomic charges, QM, Quantum mechanics,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Partial atomic charges describe the distribution of electron density in a molecule and therefore provide clues to the chemical behaviour of molecules. Recently, these charges have become popular in chemoinformatics, as they are informative descriptors that can be utilised in pharmacophore design, virtual screening, similarity searches etc. Especially conformationally-dependent charges perform very successfully. In particular, their fast and accurate calculation via the Electronegativity Equalization Method (EEM) seems very promising for chemoinformatics applications. Unfortunately, published EEM parameter sets include only parameters for basic atom types and they often miss parameters for halogens, phosphorus, sulphur, triple bonded carbon etc. Therefore their applicability for drug-like molecules is limited. RESULTS: We have prepared six EEM parameter sets which enable the user to calculate EEM charges in a quality comparable to quantum mechanics (QM) charges based on the most common charge calculation schemes (i.e., MPA, NPA and AIM) and a robust QM approach (HF/6-311G, B3LYP/6-311G). The calculated EEM parameters exhibited very good quality on a training set ([Formula: see text]) and also on a test set ([Formula: see text]). They are applicable for at least 95 % of molecules in key drug databases (DrugBank, ChEMBL, Pubchem and ZINC) compared to less than 60 % of the molecules from these databases for which currently used EEM parameters are applicable. CONCLUSIONS: We developed EEM parameters enabling the fast calculation of high-quality partial atomic charges for almost all drug-like molecules. In parallel, we provide a software solution for their easy computation (http://ncbr.muni.cz/eem_parameters). It enables the direct application of EEM in chemoinformatics.
Zobrazit více v PubMed
Svobodová Vařeková R, Geidl S, Ionescu C-M, Skřehota O, Kudera M, Sehnal D, Bouchal T, Abagyan R, Huber HJ, Koča J. Predicting pKa values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes. J Chem Inf Model. 2011;51(8):1795–1806. doi: 10.1021/ci200133w. PubMed DOI
Svobodová Vařeková R, Geidl S, Ionescu C-M, Skřehota O, Bouchal T, Sehnal D, Abagyan R, Koča J. Predicting pKa values from EEM atomic charges. J Chem Inf. 2013;5(1):18. PubMed PMC
Geidl S, Svobodová Vařeková R, Bendová V, Petrusek L, Ionescu C-M, Jurka Z, Abagyan R, Koča J. How does the methodology of 3D structure preparation influence the quality of pKa prediction? J Chem Inf Model. 2015;55(6):1088–1097. doi: 10.1021/ci500758w. PubMed DOI PMC
Dixon SL, Jurs PC. Estimation of pKa for organic oxyacids using calculated atomic charges. J Comput Chem. 1993;14:1460–1467. doi: 10.1002/jcc.540141208. DOI
Zhang J, Kleinöder T, Gasteiger J. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model. 2006;46:2256–2256. doi: 10.1021/ci060129d. PubMed DOI
Gross KC, Seybold PG, Hadad CM. Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols. Int J Quantum Chem. 2002;90:445–458. doi: 10.1002/qua.10108. DOI
Ghafourian T, Dearden JC. The use of atomic charges and orbital energies as hydrogen-bonding-donor parameters for QSAR studies: comparison of MNDO, AM1 and PM3 methods. J Pharm Pharmacol. 2000;52(6):603–610. doi: 10.1211/0022357001774435. PubMed DOI
Dudek AZ, Arodz T, Gálvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen. 2006;9(3):213–228. doi: 10.2174/138620706776055539. PubMed DOI
Karelson M, Lobanov VS, Katritzky AR. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 1996;96(3):1027–1044. doi: 10.1021/cr950202r. PubMed DOI
Todeschini R, Consonni V. Handbook of molecular descriptors. Weinheim: Wiley-VCH Verlag GmbH; 2008.
Galvez J, Garcia R, Salabert MT, Soler R. Charge indexes. New topological descriptors. J Chem Inf Model. 1994;34(3):520–525. doi: 10.1021/ci00019a008. DOI
Stalke D. Meaningful structural descriptors from charge density. Chemistry. 2011;17(34):9264–9278. doi: 10.1002/chem.201100615. PubMed DOI
Wermuth CG. Pharmacophores: historical perspective and viewpoint from a medicinal chemist. In: Langer T, Hoffmann RD, editors. Pharmacophores and pharmacophore searches. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.
MacDougall PJ, Henze CE. Fleshing-out pharmacophores with volume rendering of the Laplacian of the charge density and hyperwall visualization technology. In: Matta CF, Boyd RJ, editors. The quantum theory of atoms in molecules: from solid state to DNA and drug design. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007. pp. 499–514.
Clement OO, Mehl AT. HipHop: pharmacophores based on multiple common-feature alignments. In: Güner OF, editor. Pharmacophore perception, development, and use in drug design. La Jolla: International University Line; 2000. pp. 69–84.
Lyne PD. Structure-based virtual screening: an overview. Drug Discov Today. 2002;7(20):1047–1055. doi: 10.1016/S1359-6446(02)02483-2. PubMed DOI
Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem. 2000;43(25):4759–4767. doi: 10.1021/jm001044l. PubMed DOI
Park H, Lee J, Lee S. Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins. 2006;65(3):549–554. doi: 10.1002/prot.21183. PubMed DOI
Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, Sheridan RP. Chemical similarity using physiochemical property descriptors. J Chem Inf Model. 1996;36(1):118–127. doi: 10.1021/ci950274j. DOI
Nikolova N, Jaworska J. Approaches to measure chemical similarity—a review. QSAR Comb Sci. 2003;22(910):1006–1006. doi: 10.1002/qsar.200330831. DOI
Holliday JD, Jelfs SP, Willett P, Gedeck P. Calculation of intersubstituent similarity using R-group descriptors. J Chem Inf Comput Sci. 2003;43(2):406–411. doi: 10.1021/ci025589v. PubMed DOI
Tervo AJ, Rönkkö T, Nyrönen TH, Poso A. BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications. J Med Chem. 2005;48(12):4076–4086. doi: 10.1021/jm049123a. PubMed DOI
Vainio MJ, Johnson MS. Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model. 2007;47(6):2462–2474. doi: 10.1021/ci6005646. PubMed DOI
Lemmen C, Lengauer T, Klebe G. FLEXS: a method for fast flexible ligand superposition. J Med Chem. 1998;41(23):4502–4520. doi: 10.1021/jm981037l. PubMed DOI
Mulliken RS. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J Chem Phys. 1955;23(10):1833. doi: 10.1063/1.1740588. DOI
Mulliken RS. Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys. 1955;23(10):1841. doi: 10.1063/1.1740589. DOI
Löwdin P-O. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys. 1950;18(3):365. doi: 10.1063/1.1747632. DOI
Reed AE, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys. 1983;78(6):4066–4073. doi: 10.1063/1.445134. DOI
Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735. doi: 10.1063/1.449486. DOI
Bader RFW. Atoms in molecules. Acc Chem Res. 1985;18(1):9–15. doi: 10.1021/ar00109a003. DOI
Bader RFW. A quantum theory of molecular structure and its applications. Chem Rev. 1991;91(5):893–928. doi: 10.1021/cr00005a013. DOI
Hirshfeld FL. Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta. 1977;44(2):129–138. doi: 10.1007/BF00549096. DOI
Ritchie JP. Electron density distribution analysis for nitromethane, nitromethide, and nitramide. J Am Chem Soc. 1985;107(7):1829–1837. doi: 10.1021/ja00293a005. DOI
Ritchie JP, Bachrach SM. Some methods and applications of electron density distribution analysis. J Comput Chem. 1987;8(4):499–509. doi: 10.1002/jcc.540080430. DOI
Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem. 1990;11(3):361–373. doi: 10.1002/jcc.540110311. DOI
Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comput Chem. 1984;5(2):129–145. doi: 10.1002/jcc.540050204. DOI
Besler BH, Merz KM, Kollman PA. Atomic charges derived from semiempirical methods. J Comput Chem. 1990;11(4):431–439. doi: 10.1002/jcc.540110404. DOI
Kelly CP, Cramer CJ, Truhlar DG. Accurate partial atomic charges for high-energy molecules using class IV charge models with the MIDI! basis set. Theor Chem Acc. 2005;113(3):133–151. doi: 10.1007/s00214-004-0624-x. DOI
Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Gasteiger J, Marsili M. A new model for calculating atomic charges in molecules. Tetrahedron Lett. 1978;19(34):3181–3184. doi: 10.1016/S0040-4039(01)94977-9. DOI
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI
Cho K-H, Kang YK, No KT, Scheraga HA. A fast method for calculating geometry-dependent net atomic charges for polypeptides. J Phys Chem B. 2001;105(17):3624–3624. doi: 10.1021/jp0023213. DOI
Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS. Atomic charges via electronegativity equalization: generalizations and perspectives. Adv Quantum Chem. 2006;51:139–156. doi: 10.1016/S0065-3276(06)51004-4. DOI
Shulga DA, Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS. Fast tools for calculation of atomic charges well suited for drug design. SAR QSAR Environ Res. 2010;19(1–2):153–165. PubMed
Mortier WJ, Ghosh SK, Shankar S. Electronegativity equalization method for the calculation of atomic charges in molecules. J Am Chem Soc. 1986;108:4315–4320. doi: 10.1021/ja00275a013. DOI
Rappe AK, Goddard WA. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95(8):3358–3363. doi: 10.1021/j100161a070. DOI
Nistor RA, Polihronov JG, Müser MH, Mosey NJ. A generalization of the charge equilibration method for nonmetallic materials. J Chem Phys. 2006;125(9):094108. doi: 10.1063/1.2346671. PubMed DOI
Mathieu D. Split charge equilibration method with correct dissociation limits. J Chem Phys. 2007;127(22):224103. doi: 10.1063/1.2803060. PubMed DOI
Svobodová Vařeková R, Jiroušková Z, Vaněk J, Suchomel S, Koča J. Electronegativity equalization method: parameterization and validation for large sets of organic, organohalogene and organometal molecule. Int J Mol Sci. 2007;8:572–572. doi: 10.3390/i8070572. DOI
Janssens GOA, Baekelandt BG, Toufar H, Mortier WJ, Schoonheydt RA. Comparison of cluster and infinite crystal calculations on zeolites with the electronegativity equalization method (EEM) J Phys Chem. 1995;99(10):3251–3258. doi: 10.1021/j100010a041. DOI
Heidler R, Janssens GOA, Mortier WJ, Schoonheydt RA. Charge sensitivity analysis of intrinsic basicity of Faujasite-type zeolites using the electronegativity equalization method (EEM) J Phys Chem. 1996;100(50):19728–19734. doi: 10.1021/jp9615619. DOI
Sorich MJ, McKinnon RA, Miners JO, Winkler DA, Smith PA. Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method. J Med Chem. 2004;47(21):5311–5317. doi: 10.1021/jm0495529. PubMed DOI
Bultinck P, Langenaeker W, Carbó-Dorca R, Tollenaere JP. Fast calculation of quantum chemical molecular descriptors from the electronegativity equalization method. J Chem Inf Comput Sci. 2003;43(2):422–428. doi: 10.1021/ci0255883. PubMed DOI
Smirnov KS, van de Graaf B. Consistent implementation of the electronegativity equalization method in molecular mechanics and molecular dynamics. J Chem Soc Faraday Trans. 1996;92(13):2469. doi: 10.1039/ft9969202469. DOI
Ionescu C-M, Geidl S, Svobodová Vařeková R, Koča J. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method. J Chem Inf Model. 2013;53(10):2548–2548. doi: 10.1021/ci400448n. PubMed DOI
Baekelandt BG, Mortier WJ, Lievens JL, Schoonheydt RA. Probing the reactivity of different sites within a molecule or solid by direct computation of molecular sensitivities via an extension of the electronegativity equalization method. J Am Chem Soc. 1991;113(18):6730–6734. doi: 10.1021/ja00018a003. DOI
Jiroušková Z, Vařeková RS, Vaněk J, Koča J. Electronegativity equalization method: parameterization and validation for organic molecules using the Merz-Kollman-Singh charge distribution scheme. J Comput Chem. 2009;30(7):1174–1178. doi: 10.1002/jcc.21142. PubMed DOI
Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Van Alsenoy C, Tollenaere JP. The electronegativity equalization method II: applicability of different atomic charge schemes. J Phys Chem A. 2002;106(34):7895–7901. doi: 10.1021/jp020547v. DOI
Ouyang Y, Ye F, Liang Y. A modified electronegativity equalization method for fast and accurate calculation of atomic charges in large biological molecules. Phys Chem Chem Phys. 2009;11(29):6082–6089. doi: 10.1039/b821696g. PubMed DOI
Bultinck P, Vanholme R, Popelier PLA, De Proft F, Geerlings P. High-speed calculation of AIM charges through the electronegativity equalization method. J Phys Chem A. 2004;108(46):10359–10366. doi: 10.1021/jp046928l. DOI
O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G. Open Babel: an open chemical toolbox. J Chem Inf. 2011;3(1):33–47. PubMed PMC
Puranen JS, Vainio MJ, Johnson MS. Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J Comput Chem. 2010;31(8):1722–1732. PubMed
Svobodová Vařeková R, Koča J. Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization method. J Comput Chem. 2006;3:396–405. PubMed
Bultinck P, Carbó-Dorca R, Langenaeker W. Negative Fukui functions: new insights based on electronegativity equalization. J Chem Phys. 2003;118(10):4349. doi: 10.1063/1.1542875. DOI
Burden FR, Polley MJ, Winkler DA. Toward novel universal descriptors: charge fingerprints. J Chem Inf Model. 2009;49(3):710–715. doi: 10.1021/ci800290h. PubMed DOI
Open NCI Database (2012) Release 4. http://cactus.nci.nih.gov/download/nci/
Sadowski J, Gasteiger J. From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem Rev. 1993;93:2567–2581. doi: 10.1021/cr00023a012. DOI
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 09, Revision E.01. http://www.gaussian.com
Todd A Keith (2015) AIMAll 15.05.18. http://aim.tkgristmill.com
Raček T, Svobodová Vařeková R, Křenek A, Koča J NEEMP—tool for parameterization of empirical charge calculation method EEM. http://ncbr.muni.cz/neemp/ PubMed
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M(2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):901–906 PubMed PMC
Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2004) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(Database issue):1091–1097 PubMed PMC
Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(Database issue):1083–1090 PubMed PMC
Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. In: Wheeler R, Spellmeyer D (eds) Annual Reports in Computational Chemistry, vol. 4, Chap 12. Elsevier, Oxford
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC
R Core Team R: A Language and Environment for Statistical Computing. http://www.r-project.org/
Ionescu CM, Sehnal D, Falginella FL, Pant P, Pravda L, Bouchal T, Svobodová Vařeková R, Geidl S, Koča J (2015) AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminf 7(1):50 PubMed PMC
Optimized SQE atomic charges for peptides accessible via a web application
Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges
NEEMP: software for validation, accurate calculation and fast parameterization of EEM charges