Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32402071
PubMed Central
PMC7319571
DOI
10.1093/nar/gkaa367
PII: 5836772
Knihovny.cz E-zdroje
- MeSH
- fenoly chemie MeSH
- internet MeSH
- molekulární modely * MeSH
- molekulární struktura MeSH
- nikotinové receptory chemie MeSH
- protein X asociovaný s bcl-2 chemie MeSH
- software * MeSH
- statická elektřina MeSH
- vodík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fenoly MeSH
- nikotinové receptory MeSH
- protein X asociovaný s bcl-2 MeSH
- vodík MeSH
Partial atomic charges serve as a simple model for the electrostatic distribution of a molecule that drives its interactions with its surroundings. Since partial atomic charges are frequently used in computational chemistry, chemoinformatics and bioinformatics, many computational approaches for calculating them have been introduced. The most applicable are fast and reasonably accurate empirical charge calculation approaches. Here, we introduce Atomic Charge Calculator II (ACC II), a web application that enables the calculation of partial atomic charges via all the main empirical approaches and for all types of molecules. ACC II implements 17 empirical charge calculation methods, including the highly cited (QEq, EEM), the recently published (EQeq, EQeq+C), and the old but still often used (PEOE). ACC II enables the fast calculation of charges even for large macromolecular structures. The web server also offers charge visualization, courtesy of the powerful LiteMol viewer. The calculation setup of ACC II is very straightforward and enables the quick calculation of high-quality partial charges. The application is available at https://acc2.ncbr.muni.cz.
CEITEC Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Faculty of Informatics Masaryk University Brno 602 00 Czech Republic
Zobrazit více v PubMed
Berzelius J. Erste fortsetzung des versuchs, die bestimmten und einfachen Verhältnisse aufzufinden, nach welchen die Bestandtheile der unorganischen Natur mit einander verbunden sind. Ann. Phys. 1811; 38:161–226.
Mulliken R.S. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 1955; 23:1833–1840.
Rappé A.K., Goddard W.A.. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991; 95:3358–3363.
Park H., Lee J., Lee S.. Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins Struct. Funct. Bioinforma. 2006; 65:549–554. PubMed
Vainio M.J., Johnson M.S.. Generating conformer ensembles using a multiobjective genetic algorithm. J. Chem. Inf. Model. 2007; 47:2462–2474. PubMed
Gross K.C., Seybold P.G., Hadad C.M.. Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols. Int. J. Quantum Chem. 2002; 90:445–458.
Svobodová Vařeková R., Geidl S., Ionescu C.-M., Skřehota O., Kudera M., Sehnal D., Bouchal T., Abagyan R., Huber H.J., Koča J.. Predicting pKa values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes. J. Chem. Inf. Model. 2011; 51:1795–1806. PubMed
Bissantz C., Folkers G., Rognan D.. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. 2000; 43:4759–4767. PubMed
Holliday J.S., Jelfs S.P., Willett P., Gedeck P.. Calculation of intersubstituent similarity using R-group descriptors. J. Chem. Inf. Comput. Sci. 2003; 43:406–411. PubMed
Ionescu C.-M., Svobodová Vařeková R., Prehn J.H.M., Huber H.J., Koča J.. Charge profile analysis reveals that activation of pro-apoptotic regulators bax and bak relies on charge transfer mediated allosteric regulation. PLoS Comput. Biol. 2012; 8:e1002565. PubMed PMC
Cho M., Sylvetsky N., Eshafi S., Santra G., Efremenko I., Martin J.M.L.. The atomic partial charges arboretum: trying to see the forest for the trees. ChemPhysChem. 2020; 21:688–696. PubMed PMC
Gasteiger J., Marsili M.. A new model for calculating atomic charges in molecules. Tetrahedron Lett. 1978; 34:3181–3184.
No K.T., Grant J.A., Scheraga H.A.. Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 1. Application to neutral molecules as models for polypeptides. J. Phys. Chem. 1990; 94:4732–4739.
Yakovenko O., Oliferenko A.A., Bdzhola V.G., Palyulin V.A., Zefirov N.S.. Kirchhoff atomic charges fitted to multipole moments: implementation for a virtual screening system. J. Comput. Chem. 2008; 29:1332–1343. PubMed
Shulga D.A., Oliferenko A.A., Pisarev S.A., Palyulin V.A., Zefirov N.S.. Fast tools for calculation of atomic charges well suited for drug design. SAR QSAR Environ. Res. 2008; 19:153–165. PubMed
Mortier W.J., Ghosh S.K., Shankar S.. Electronegativity equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 1986; 108:4315–4320.
Wilmer C.E., Kim K.C., Snurr R.Q.. An extended charge equilibration method. J. Phys. Chem. Lett. 2012; 3:2506–2511. PubMed
Geidl S., Bouchal T., Raček T., Svobodová Vařeková R., Hejret V., Křenek A., Abagyan R., Koča J.. High-quality and universal empirical atomic charges for chemoinformatics applications. J. Cheminform. 2015; 7:59. PubMed PMC
Raček T., Pazúriková J., Svobodová Vařeková R., Geidl S., Křenek A., Falginella F.L., Horský V., Hejret V., Koča J.. NEEMP: software for validation, accurate calculation and fast parameterization of EEM charges. J. Cheminform. 2016; 8:57. PubMed PMC
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R.. Open Babel: an open chemical toolbox. J. Cheminform. 2011; 3:33. PubMed PMC
Gilson M.K., Gilson H.S.R., Potter M.J.. Fast assignment of accurate partial atomic charges: an electronegativity equalization method that accounts for alternate resonance forms. J. Chem. Inf. Comput. Sci. 2003; 43:1982–1997. PubMed
Svobodová Vařeková R., Koča J.. Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization method. J. Comput. Chem. 2006; 27:396–405. PubMed
Ionescu C.-M., Sehnal D., Falginella F.L., Pant P., Pravda L., Bouchal T., Svobodová Vařeková R., Geidl S., Koča J.. AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J. Cheminform. 2015; 7:50. PubMed PMC
Sehnal D., Deshpande M., Svobodová Vařeková R., Mir S., Berka K., Midlik A., Pravda L., Velankar S., Koča J.. LiteMol suite: Interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods. 2017; 14:1121–1122. PubMed
Del Re G. A simple MO-LCAO method for the calculation of charge distributions in saturated organic molecules. J. Chem. Soc. 1958; 11:4031–4040.
Abraham R.J., Hudson B.. Approaches to charge calculations in molecular mechanics. J. Comput. Chem. 1982; 3:407–416.
Oliferenko A.A., Palyulin V.A., Neiman A.V., Zefirov N.S.. A new topological model for the calculation of partial atomic charges. Dokl. Chem. 2000; 375:281–284.
Oliferenko A.A., Palyulin V.A., Pisarev S.A., Neiman A.V., Zefirov N.S.. Novel point charge models: reliable instruments for molecular electrostatics. J. Phys. Org. Chem. 2001; 14:355–369.
Wu Y.-X., Cao C.-Z., Yuan H.. Equalized electronegativity based on the valence electrons and its application. Chinese J. Chem. Phys. 2011; 24:31–39.
Yang Z.-Z., Wang C.-S.. Atom-bond electronegativity equalization method. 1. Calculation of the charge distribution in large molecules. J. Phys. Chem. A. 1997; 101:6315–6321.
Chaves J., Barroso J.M., Bultinck P., Carbó-Dorca R.. Toward an alternative hardness kernel matrix structure in the Electronegativity Equalization Method (EEM). J. Chem. Inf. Model. 2006; 46:1657–1665. PubMed
Zhang M., Fournier R.. Self-consistent charge equilibration method and its application to Au13Nan (n = 1, 10) clusters. J. Phys. Chem. A. 2009; 113:3162–3170. PubMed
Martin-Noble G.C., Reilley D., Rivas L.M., Smith M.D., Schrier J.. EQeq+C: an empirical bond-order-corrected extended charge equilibration method. J. Chem. Theory Comput. 2015; 11:3364–3374. PubMed
Cho K.H., Kang Y.K., No K.T., Scheraga H.A.. A fast method for calculating geometry-dependent net atomic charges for polypeptides. J. Phys. Chem. B. 2001; 105:3624–3634.
Liptak M.D., Gross K.C., Seybold P.G., Feldgus S., Shields G.C.. Absolute pKa determinations for substituted phenols. J. Am. Chem. Soc. 2002; 124:6421–6427. PubMed
Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 2005; 346:967–989. PubMed
Vriend G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 1990; 8:52–56. PubMed
αCharges: partial atomic charges for AlphaFold structures in high quality
Optimized SQE atomic charges for peptides accessible via a web application
High-performance macromolecular data delivery and visualization for the web