Charge profile analysis reveals that activation of pro-apoptotic regulators Bax and Bak relies on charge transfer mediated allosteric regulation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
PubMed
22719244
PubMed Central
PMC3375244
DOI
10.1371/journal.pcbi.1002565
PII: PCOMPBIOL-D-12-00394
Knihovny.cz E-zdroje
- MeSH
- alosterická regulace MeSH
- apoptóza fyziologie MeSH
- biologické modely * MeSH
- interakční proteinové domény a motivy MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- počítačová simulace MeSH
- protein Bak chemie genetika metabolismus MeSH
- protein X asociovaný s bcl-2 chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- statická elektřina MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
- Názvy látek
- BAK1 protein, human MeSH Prohlížeč
- BAX protein, human MeSH Prohlížeč
- protein Bak MeSH
- protein X asociovaný s bcl-2 MeSH
The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure.
Zobrazit více v PubMed
Kroemer G, Galluzzi L, Brenner C. Mitochondrial Membrane Permeabilization in Cell Death. Physiol Rev. 2007;87:163. PubMed
Wei MC, Cheng EH-Y, Zong W-X, Lindsten T, Panoutsakopoulou V. Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death. Science. 2001;292:730. PubMed PMC
Kuwana T, Newmeyer DD. Bcl-2 family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol. 2003;15:699. PubMed
Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11:632. PubMed
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:192. PubMed
Marsden VS, Strasser A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu Rev Immunol. 2003;21:105. PubMed
Leber B, Lin J, Andrews DW. Embedded Together: The Life and Death Consequences of Interaction of the Bcl-2 Family with Membranes. Apoptosis. 2007;12:911. PubMed PMC
Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 2008;18:164. PubMed PMC
Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74:619. PubMed
Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:859. PubMed
Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000;20:935. PubMed PMC
Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525–535. 2005. PubMed
Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S. A stapled BID BH3 helix directly binds and activates BAX. Mol Cell. 2006;24:210. PubMed
Wolter KG, Hsu Y-T, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997;139:1292. PubMed PMC
Hsu Y-T, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-xL during apoptosis. Proc Natl Acad Sci U S A. 1997;94:3672. PubMed PMC
Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 2000;103:654. PubMed
Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell. 2008;135:1084. PubMed
Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH. BAX activation is initiated at a novel interaction site. Nature. 2008;455:1081. PubMed PMC
Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell. 2010;40:492. PubMed PMC
Czabotar PE, Colman PM, Huang DCS. Bax activation by Bim? Cell Death Differ. 2009;16:1191. PubMed
Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta. 2011;1813:531. PubMed
Van der Vaart A, Bursulaya BD, Brooks CL, III, Merz KM., Jr Are Many-Body Effects Important in Protein Folding? J Phys Chem B. 2000;104:9563.
Cho AE, Guallar V, Berne BJ, Friesner R. Importance of Accurate Charges in Molecular Docking: Quantum Mechanical/Molecular Mechanical (QM/MM) Approach J Comput Chem. 2005;26:931. PubMed PMC
Bucher D, Raugei D, Guidoni L, Dal Peraro M, Rothlisberger U. Polarization effects and charge transfer in the KcsA potassium channel. Biophys Chem. 2006;124:301. PubMed
Anisimov VM, Cavasotto CN. Quantum-Mechanical Molecular Dynamics of Charge Transfer. In: Paneth P, Dybala-Defratyka A. Kinetics and Dynamics: From Nano- to Bio-scale. Springer. pp. 2010. pp. 266.
Mortier WJ, Ghosh SK, Shankar S. Electronegativity Equalization Method for the Calculation of Atomic Charges in Molecules. J Am Chem Soc. 1986;108:4320.
Rappe AK, Goddard WA., III Charge Equilibration for Molecular Dynamics Simulations. J Phys Chem. 1991;95:3363.
Smirnov KS. Computer Modeling Study of Interaction of Acetonitrile with Hydroxyl Groups of HY Zeolite. J Phys Chem B. 2001;105:7413.
Cong Y, Yang Z-Z, Wang C-S, Liu X-C, Bao X-H. Investigation of the regio- and stereoselectivity of Dies-Alder reactions by newly developed ABEEM σπ model on the basis of local HSAB principle and maximum hardness principle. Chem Phys Lett. 2002;357:64.
Shimizu K, Chaimovich H, Farah JPS, Dias LG, Bostick DL. Calculation of the dipole moment for polypeptides using the generalized born-electronegativity equalization method: Results in vacuum and continuum-dielectric solvent. J Phys Chem B. 2004;108:4177.
Wallin G, Nervall M, Carlsson J, Aqvist J. Charges for Large Scale Binding Free Energy Calculations with the Linear Interaction Energy Method. J Chem Theory Comput. 2009;5:395. PubMed
Svobodova RV, Jiroušková Z, Vaněk J, Suchomel Š, Koča J. Electronegativity Equalization Method: Parameterization and Validation for Large Sets of Organic, Organohalogene and Organometal Molecules. Int J Mol Sci. 2007;8:582.
Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P. The Electronegativity Equalization Method I: Parameterization and Validation for Atomic Charge Calculations. J Phys Chem. 2002;106:7894.
Berente I, Czinki E, Naray-Szabo G. A Combined Electronegativity Equalization and Electrostatic Potential Fit Method for the Determination of Atomic Point Charges. J Comput Chem. 2007;28:1942. PubMed
Kang YK, Scheraga HA. An Efficient Method for Calculating Atomic Charges of Peptides and Proteins from Electronic Populations. J Phys Chem B. 2008;112:5478. PubMed PMC
Verstraelen T, Van Speybroeck V, Waroquier M. The electronegativity equalization method and the split charge equilibration applied to organic systems: Parameterization, validation, and comparison. J Chem Phys. 2009;131:19. PubMed
Purannen JS, Vainio MJ, Johnson MS. Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J Comp Chem. 2009;31:1732. PubMed
Ouyang Y, Ye F, Liang Y. A modified electronegativity equalization method for fast and accurate calculation of atomic charges in large biological molecules. Phys Chem Chem Phys. 2009;11:6089. PubMed
Svobodová Vařeková R, Koča J. Optimized and Parallelized Implementation of the Electronegativity Equalization Method and the Atom-Bond Electronegativity Equalization Method. J Comput Chem. 2005;27:405. PubMed
Nechushtan A, Smith CL, Hsu Y-T, Youle RJ. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 1999;18:2341. PubMed PMC
George NM, Evans JJD, Luo X. A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax. Genes Dev. 2007;21:1948. PubMed PMC
Cheng EH-Y, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 Inhibits BAK Activation and Mitochondrial Apoptosis. Science. 2003;301:517. PubMed
Roy SS, Ehrlich AM, Craigen WJ, Hajnoczky G. VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO Rep. 2009;10:1347. PubMed PMC
Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM. To Trigger Apoptosis, Bak Exposes Its BH3 Domain and Homodimerizes via BH3:Groove Interactions. Mol Cell. 2008;30:380. PubMed
Lazarou M, Stojanovski D, Frazier AE, Kotevski A, Dewson G. Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. J Biol Chem. 2010;285:36883. PubMed PMC
Dai H, Smith A, Meng XW, Schneider PA, Pang YP. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J Cell Biol. 2011;194:48. PubMed PMC
Moldoveanu T, Liu Q, Tocilj A, Watson M, Shore G. The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell. 2006;24:688. PubMed
Tsai CJ, del Sol A, Nussinov R. Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol. 2008;378:11. PubMed PMC
Bu Z, Callaway DJ. Proteins move! Proteins dynamics and long-range allostery in cell signaling. Adv Protein Chem Struct Biol. 2011;83:221. PubMed
Düssmann H, Rehm M, Concannon CG, Anguissola S, Würstle M. Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation. Cell Death Differ. 2010;17:290. PubMed
Cong Y, Yang Z-Z. General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptides. Chem Phys Lett. 2000;316:329.
Menegon G, Shimizu K, Farah JPS, Dias LG, Chaimovich H. Parameterization of the electronegativity equalization method based on the charge model 1. Phys Chem Chem Phys. 2002;4:5936.
Chaves J, Barroso JM, Bultinck P, Carbó-Dorca R. Toward an Alternative Hardness Kernel Matrix Structure in the Electronegativity Equalization Method (EEM). J Chem Inf Model. 2005;46:1665. PubMed
Yang Z-Z, Wang C-S. Atom-Bond Electronegativity Equalization Method. 1. Calculation of the Charge Distribution in Large Molecules. J Phys Chem A. 1997;101:6321.
Sanderson RT. An Interpretation of Bond Lengths and a Classification of Bonds. Science. 1951;114:672. PubMed
Parr RG, Donnelly RA, Levy M, Palke WE. Electronegativity: the density functional viewpoint. J Chem Phys. 1978;68:3807.
Parr RG, Pearson RG. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J Am Chem Soc. 1983;105:7516.
Wilson MS, Ichikawa S. Comparison between the Geometric and Harmonic Mean Electronegativity Equilibration Techniques. J Phys Chem. 1989;93:3089.
Pauling L. The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms. J Am Chem Soc. 1932;54:3582.
Allred AL. Electronegativity values from thermochemical data. J Inorg Nucl Chem. 1961;17:221.
Prokop M, Adam J, Kriz Z, Wimmerova M, Koca J. TRITON: a graphical tool for ligand-binding protein engineering. Bioinformatics. 2008;24:1956. PubMed PMC
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA. Gaussian 03 (Gaussian, Inc, Wallingford, CT), Revision C.02. 2004.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA. ClustalW and Clustal X version 2.0. Bioinformatics. 2007;23:2948. PubMed
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graphics 14. 1996;33–38:38. PubMed
Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges